![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Astronomy, space & time
This textbook on the nature of space and time explains the new theory of Space Dynamics, which describes the dynamics of gravity as the evolution of conformal 3-dimensional geometry. Shape Dynamics is equivalent to Einstein's General Relativity in those situations in which the latter has been tested experimentally, but the theory is based on different first principles. It differs from General Relativity in certain extreme conditions. Shape Dynamics allows us to describe situations in which the spacetime picture is no longer adequate, such as in the presence of singularities, when the idealization of infinitesimal rods measuring scales and infinitesimal clocks measuring proper time fails. This tutorial book contains both a quick introduction for readers curious about Shape Dynamics, and a detailed walk-through of the historical and conceptual motivations for the theory, its logical development from first principles and a description of its present status. It includes an explanation of the origin of the theory, starting from problems posed first by Newton more than 300 years ago. The book will interest scientists from a large community including all foundational fields of physics, from quantum gravity to cosmology and quantum foundations, as well as researchers interested in foundations. The tutorial is sufficiently self-contained for students with some basic background in Lagrangian/Hamiltonian mechanics and General Relativity.
Senior scientists from neighboring and other NATO countries joined their efforts to help this region to get to know their problems, discussed their solutions and how they can be helped out. Distinguished experts described how they had succeeded in developing the solutions to such problem in their countries.
Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only reviews the progress made since the early days of pulsar astronomy, but especially focuses on questions such as: "What have we learned about the subject and how did we learn it?," "What are the most important open questions in this area?" and "What new tools, telescopes, observations, and calculations are needed to answer these questions?." All authors who have contributed to this book have devoted a significant part of their scientific careers to exploring the nature of neutron stars and understanding pulsars. Everyone has paid special attention to writing educational comprehensive review articles with the needs of beginners, students and young scientists as potential readers in mind. This book will be a valuable source of information for these groups.
Intended for undergraduate non-science majors, satisfying a general education requirement or seeking an elective in natural science, this is a physics text, but with the emphasis on topics and applications in astronomy. The perspective is thus different from most undergraduate astronomy courses: rather than discussing what is known about the heavens, this text develops the principles of physics so as to illuminate what we see in the heavens. The fundamental principles governing the behaviour of matter and energy are thus used to study the solar system, the structure and evolution of stars, and the early universe. The first part of the book develops Newtonian mechanics towards an understanding of celestial mechanics, while chapters on electromagnetism and elementary quantum theory lay the foundation of the modern theory of the structure of matter and the role of radiation in the constitution of stars. Kinetic theory and nuclear physics provide the basis for a discussion of stellar structure and evolution, and an examination of red shifts and other observational data provide a basis for discussions of cosmology and cosmogony.
The second edition of Solar System Astrophysics: Background Science and the Inner Solar System provides new insights into the burgeoning field of planetary astronomy. As in the first edition, this volume begins with a rigorous treatment of coordinate frames, basic positional astronomy, and the celestial mechanics of two and restricted three body system problems. Perturbations are treated in the same way, with clear step-by-step derivations. Then the Earth's gravitational potential field and the Earth-Moon system are discussed, and the exposition turns to radiation properties with a chapter on the Sun. The exposition of the physical properties of the Moon and the terrestrial planets are greatly expanded, with much new information highlighted on the Moon, Mercury, Venus, and Mars. All of the material is presented within a framework of historical importance. This book and its sister volume, Solar System Astrophysics: Background Science and the Inner Solar system, are pedagogically well written, providing clearly illustrated explanations, for example, of such topics as the numerical integration of the Adams-Williamson equation, the equations of state in planetary interiors and atmospheres, Maxwell's equations as applied to planetary ionospheres and magnetospheres, and the physics and chemistry of the Habitable Zone in planetary systems. Together, the volumes form a comprehensive text for any university course that aims to deal with all aspects of solar and extra-solar planetary systems. They will appeal separately to the intellectually curious who would like to know how just how far our knowledge of the solar system has progressed in recent years.
This volume contains the proceedings of an international conference on Shocks in Astrophysics held at UMIST, Manchester, England from January 9-12, 1995. The study of interstellar and circumstellar gas dynamics has a long and distinguished history in Manchester and has been almost entirely concentrated in the school founded by Franz Kahn in the Astronomy Department, University of Manchester. In January 1993, one of us (AR) was appointed to the faculty of the Astrophysics Group in the Department of Mathematics at UMIST and astrophysical gas dynam ics became a major interest of the Group. The subject of this conference was chosen partly for the topicality of the subject matter and partly to help synthesise this expertise with the expertise in interstellar chemistry already present in the Group. The first fruits of this synthesis are contained in this volume. As it happened, this conference celebrated, not so much the beginnings of a long and fruitful collabo ration, but rather gave many of Alex's friends the chance to say a fond farewell as he departed UMIST at the end of January 1995 to take up a chair at UNAM, Mexico City. The core of this volume consists of twelve review articles, marked (R) in the list of contents, incorporating observational and theoretical studies of shock waves in a variety of situations from Herbig-Haro objects to Supernova Remnants to Active Galactic Nuclei. We have also included the contributed (C) and poster (P) papers."
This book offers an essential compendium of astronomical high-resolution techniques. Recent years have seen considerable developments in such techniques, which are critical to advances in many areas of astronomy. As reflected in the book, these techniques can be divided into direct methods, interferometry, and reconstruction methods, and can be applied to a huge variety of astrophysical systems, ranging from planets, single stars and binaries to active galactic nuclei, providing angular resolution in the micro- to tens of milliarcsecond scales. Written by experts in their fields, the chapters cover adaptive optics, aperture masking imaging, spectra disentangling, interferometry, lucky imaging, Roche tomography, imaging with interferometry, interferometry of AGN, AGN reverberation mapping, Doppler- and magnetic imaging of stellar surfaces, Doppler tomography, eclipse mapping, Stokes imaging, and stellar tomography. This book is intended to enable a next generation of astronomers to apply high-resolution techniques. It informs readers on how to achieve the best angular resolution in the visible and near-infrared regimes from diffraction-limited to micro-arcsecond scales.
This book provides an overview of many of the dramatic recent developments in the fields of astronomy, cosmology and fundamental physics. Topics include observations of the structure in the cosmic background radiation, evidence for an accelerating Universe, the extraordinary concordance in the fundamental parameters of the Universe coming from these and other diverse observations, the search for dark matter candidates, evidence for neutrino oscillations, space experiments on fundamental physics, and discoveries of extrasolar planets. This book will be useful for researchers and graduate students who wish to have a broad overview of the current developments in these fields.
Readers with any kind of an interest in astronomy will find this work fascinating, detailing as it does the proceedings of the symposium of the same name held in Japan in 2006. The symposium focused on mapping the interstellar media and other components in galactic disks, bulges, halos, and central regions of galaxies. Thanks to recent progress in observations using radio interferometers and optical/infrared telescopes in ground and space, our knowledge on structures of our Galaxy and nearby galaxies has been growing for the last decade.
TheFifthHEIDELBERGInternationalConferenceonDarkMatterinAst- and Particle Physics, DARK 2004, took place at Texas A&M University, College Station Texas, USA, October 3-9, 2004. It was, after Cape Town 2002, the second conference of this series held outside Germany. The earlier meetings, starting in 1996, were held in Heidelberg. Dark Matter is still one of the most exciting and central ?elds of ast- physics, particle physics and cosmology. The conference covered, as usual for this series, a large range of topics, theoretical and experimental. Theoretical talks covered SUSY/SUGRA phenomenology, which provides at present a preferred theoretical framework for the existence of cold dark matter. Also included were other possible explanations of dark matter such as SUSY Q balls, exciting New Symmetries, etc. The most important experiments in the underground search for cold and hot dark matter were presented. Talks describing the current experimental dark matter bounds, what might be obtained in the near future, and the reach of future large (i.e. one ton) detectors were given. The potential of future colliders to correlate accelerator physics with dark matter searches was also outlined. Thus the reader will be able to see the present status and future prospects in the search for dark matter. The exciting astronomical evidence for dark matter and corresponding observations concerning the Milky Way's black hole, high-redshift clusters, wakes in dark matter halos were other important topics at the conference.
Advances in Space Environment Research - Volume I contains the
proceedings of two international workshops, the World Space
Environment Forum (WSEF2002) and the High Performance Computing in
Space Environment Research (HPC2002), organized by the World
Institute for Space Environment Research (WISER) from 22 July to 2
August 2002 in Adelaide, Australia.
Causal relations, and with them the underlying null cone or conformal structure, form a basic ingredient in all general analytical studies of asymptotically flat space-time. The present book reviews these aspects from the analytical, geometrical and numerical points of view. Care has been taken to present the material in a way that will also be accessible to postgraduate students and nonspecialist reseachers from related fields.
This workshop is devoted to Double stars. The general topics of the meeting were: for mation, dynamics and evolutionary tracks. In accordance with the pure tradition of the Saint James way, "pilgrims" from all over the world come to meet together in Santiago. Although with a common interest (double stars), this meeting was a multidisciplinary one, since scientists with different backgrounds participated in it. As a matter of fact, we think that this is the first workshop jointly supported by IAU Commissions 7 (Celestial mechanics) and 26 (Double and multiple stars). It is our belief that this meeting will be the origin of a more close relations and common research. This meeting was held under the invitation of the University of Santiago de Compostela to commemorate its fifth centenary, and organized by the Astronomical Observatory named after its founder, Ramon M. Aller, who made significant contributions in the study of visual double stars, and was one of the pioneers who put the seeds of the present blossoming of Astronomy in Spain. The Scientific Organizing Committee was formed by Drs. C. Allen, P. Couteau, J. A. Docobo, R. Dvorak, A. Elipe, S. Ferraz-Mello (co-chairman), H.A.McAlister, M. Valtonen, C.Worley (chairman) and H. Zinnecker. The Local Organizing Committee was formed by Drs. J. A. Docobo (chairman), A."
Roger-Maurice Bonnet*Michel Blanc Originally published in the journal Space Science Reviews, Volume 137, Nos 1-4. DOI: 10. 1007/s11214-008-9418-0 (c) Springer Science+Business Media B. V. 2008 "Planetary Atmospheric Electricity" is the rst publication of its kind in the Space Science Series of ISSI. It is the result of a new and successful joint venture between ISSI and Eu- planet. Europlanet is a network of over 110 European and U. S. laboratories deeply involved in the development of planetary sciences and support to the European planetary space exp- ration programme. In 2004, the Europlanet consortium obtained support from the European Commission to strengthen the planetary science community worldwide, and to amplify the scienti c output, impact and visibility of the European space programme, essentially the - ropean Space Agency's Horizon 2000, Cosmic Vision programmes and their successors. Its presentcontractwiththeCommissionextendsfrom2005to2008,andincludes7networking activities, including discipline-based working groups covering the main areas of planetary sciences. A new contract with the Commission, presently under negotiation, will extend - roplanet's activities into the period 2009-2012. With the broad community connection made through its Discipline Working Groups and other activities, Europlanet offers an ideal base from which to identify new elds of research for planetary sciences and to stimulate coll- orative work among its member laboratories.
In these lectures, I have discussed a number of basic concepts that provide the necessary background to the current studies of star formation. A ?rst partwas dedicatedto illustrate the conceptofa protostar, discussing con- tions and propertiesof the collapseof a molecular core. A secondpart deals with circumstellardisks. Disks areimportantnot only to the processofstar formation itself, but also because they are in all probability the site where planets form. The age range of pre-main-sequence stars coincides with the timescales for the formation of very large planetesimals, the building blocks of planets. Studies ofdisk properties in pre-main-sequencestars ofdi?erent age, located in star-forming regions of di?erent properties, may shed light on the characteristics of planet formation processes. ISO observations can provide important (in some cases, unique) inf- mation on the various stages of the star and planet formation. I have illustrated in detail some examples, when, to my knowledge, ISO data had been reduced and analyzed. Many other programs exist, and will certainly contribute to our understanding of star formation in the near future
This volume presents a collection of some of the seminal articles of Professor K. S. Shukla who made immense contributions to our understanding of the history and development of mathematics and astronomy in India. It consists of six parts: Part I constitutes introductory articles which give an overview of the life and work of Prof. Shukla, including details of his publications, reminiscences from his former students, and an analysis of his monumental contributions. Part II is a collection of important articles penned by Prof. Shukla related to various aspects of Indian mathematics. Part III consists of articles by Bibhutibhusan Datta and Avadhesh Narayan Singh-which together constitute the third unpublished part of their History of Hindu Mathematics-that were revised and updated by Prof. Shukla. Parts IV and V consist of a number of important articles of Prof. Shukla on different aspects of Indian astronomy. Part VI includes some important reviews authored by him and a few reviews of his work. Given the sheer range and depth of Prof. Shukla's scholarship, this volume is essential reading for scholars seeking to deepen their understanding of the rich and varied contributions made by Indian mathematicians and astronomers.
The joint NASA-ESA Cassini-Huygens mission promises to return four (and possibly more) years of unparalleled scientific data from the solar system's most exotic planet, the ringed, gas giant, Saturn. Larger than Galileo with a much greater communication bandwidth, Cassini can accomplish in a single flyby what Galileo returned in a series of passes. Cassini explores the Saturn environment in three dimensions, using gravity assists to climb out of the equatorial plane to look down on the rings from above, to image the aurora and to study polar magnetospheric processes such as field-aligned currents. Since the radiation belt particle fluxes are much more benign than those at Jupiter, Cassini can more safely explore the inner regions of the magnetosphere. The spacecraft approaches the planet closer than Galileo could, and explores the inner moons and the rings much more thoroughly than was possible at Jupiter. This book is the second volume, in a three volume set, that describes the Cassini/Huygens mission. This volume describes the in situ investigations on the Cassini orbiter: plasma spectrometer, ion and neutral mass spectrometer, energetic charged and neutral particle spectrometer, magnetometer, radio and plasma wave spectrometer and the cosmic dust analyzer. This book is of interest to all potential users of the Cassini-Huygens data, to those who wish to learn about the planned scientific return from the Cassini-Huygens mission and those curious about the processes occurring on this most fascinating planet. A third volume describes the remote sensing investigations on the orbiter.
Solar physics in India has a tradition that can be traced to the setting up of the Kodaikanal Observatory in 1899 when the Madras Observatory was relocated to a high altitude site with a view to initiate observations of the sun. This conference on Magnetic Coupling between the Interior and the Atmosphere of the Sun during 2-5 December 2008 was planned to coincide with centenary of the Evershed effect discovery at Kodaikanal in 1909. The aim of this meeting was to bring to a critical focus a comprehensive - derstanding of the important issues pertaining to solar magnetism with particular emphasis on the various MHD processes that operate in the solar atmosphere. The current status of magnetic eld measurements and their implications in the light of recenttheoriesandnumericalmodelingthataddressthe fundamentalscalesandp- cessesinthehighlymagnetizedturbulentplasmawerereviewedduringthismeeting. The meeting was timely for the following reasons: Space observations such as from SOHO and TRACE have provided a wealth of multiwavelength observations onprocessesoccurringinregionsofthe atmosphereextendingfromthe photosphere up to the outer corona. With the launch of Hinode and STEREO in 2006 and of SDO (Solar Dynamics Observatory) shortly, this conference provided a platform for in-depth discussions on new results from various space missions as well as a comparison with ground-based observing facilities such as the Swedish 1-m Solar Telescope. Using sophisticated image processing techniques, such telescopes r- tinelygenerateobservationswitharesolutionbetterthan0. 1arcsec,therebyyielding more informative diagnostics for instance of the microstructure of ux tubes.
Planetary nebulae present a fascinating range of shapes and morphologies. They are ideal laboratories for the study of different astrophysical processes: atomic physics, radiative transfer, stellar winds, shocks, wind-wind interaction, and the interaction between stellar winds and the interstellar medium. In addition, planetary nebulae provide information about the late stages of stellar evolution. In the last five years studies of planetary nebulae have progressed very rapidly and new phenomena and insights have been gained. This is partly due to new observations (e.g. from the Hubble Space Telescope, the ISO satellite and new infrared and millimeter spectrographs) and partly to the advancement of hydrodynamic simulations of the structures of planetary nebulae (PN). Many of these new results were reported at IAU Symposium 180 in Groningen, the Netherlands, on August 26 to 30, 1996. This symposium was dedicated to one of the pioneers of PN research: Stuart Pottasch. These proceedings contain chapters on: Introduction to PN with the basic parameters Distances of PN The central stars of PN The envelopes of PN The evolution from AGB to PN The evolution from PN to white dwarfs PN in the galactic context PN in extragalactic systems The future of PN research . The book contains 29 reviews and more than 200 shorter contributions.
A masterly survey of the last 13 years of Very Long Baseline Interferometry, reviewed in light of the most advanced astronomical observations. Topics covered include: Nonthermal emission from extragalactic radio sources; Principles of synchrotron emission in relation to astrophysics; Theory of relativistic jets; Young, powerful radio sources and their evolution; Scintillation in extragalactic radio sources; Radio and optical interferometry; Radio polarimetry; Unified schemes; Deep fields; Tropospheric and ionospheric phase calibration; Supernovae; VLBI for geodesy and geodynamics.
This volume focuses on isotopic signatures of volatile elements as
tracers for evolutionary processes during the formation of the Sun
and the planets from an interstellar molecular cloud and, in turn,
illuminates how the isotopic compositions of the present-day solar
system objects have been established.
This book presents a study of the young supernova remnant RX J1713.7-3946 in order to reveal the origin of cosmic rays in our galaxy. The study focuses on the X-ray and gamma radiation from the cosmic ray electrons and protons in the supernova remnant as well as the emission from the surrounding interstellar gas measured by the NANTEN2 4-m radio telescope at Nagoya University. The gamma rays show a good spatial correspondence with the interstellar gas, which for the first time provides strong evidence of the acceleration of cosmic ray protons. Additionally, the author determines that an interaction between the supernova shockwaves and interstellar gas, referred to as "shock-cloud interaction," promotes the efficient acceleration of cosmic ray electrons in the supernova remnant. The book reveals that the interstellar gas plays an essential role in producing the high-energy radiation and cosmic rays, offering vital new insights into the origin and behavior of galactic cosmic rays.
This book offers a unique review of how astronomical information handling (in the broad sense) evolved in the course of the 20th century, and especially during its second half. This volume is a natural complement to the book Information handling in astronomy published in the same series. The scope of these two volumes includes not only dealing with professional astronomical data from the collecting instruments (ground-based and space-borne) to the users/researchers, but also publishing, education and public outreach. In short, the information flow in astronomy is thus illustrated from sources (cosmic objects) to end (mankind's knowledge). The experts contributing to this book have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy while providing specific detailed information, as well as plenty of pointers and bibliographic elements. Especially enlightening are some lessons learned' sections. |
![]() ![]() You may like...
Multi-model Jumping Systems: Robust…
Shuping He, Xiaoli Luan
Hardcover
R2,876
Discovery Miles 28 760
Resolution of Singularities - A research…
Herwig Hauser, Joseph Lipman, …
Hardcover
R3,486
Discovery Miles 34 860
Science Perspectives for 3D Spectroscopy…
Markus Kissler-Patig, Jeremy Walsh, …
Hardcover
R2,940
Discovery Miles 29 400
Platinum Mathematics CAPS - Grade 6…
L. Bowie, C. Gleeson-Baird, …
Paperback
![]() R233 Discovery Miles 2 330
Lecture Notes on O-Minimal Structures…
Chris Miller, Jean-Philippe Rolin, …
Paperback
R3,365
Discovery Miles 33 650
|