![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time
This publication is a result of three meetings, each 5 days long, held at the Goddard Space Flight Center on January 24-28, 1983, June 8-14, 1983, and February 13-17, 1984. The meetings were held in the interim between the full operations of the Solar Maximum Mission (SMM) in 1980, and the renewed operations after its repair in orbit in April 1984. Their general objectives were as follows: o Synthesize flare studies after three years of SMM data analysis. Many analyses of individual flares and individual phenomena, often jointly across many data sources had been published, but a need existed for a broader synthesis and updating of our understanding of solar flares since the Skylab Flare Workshops held several years earlier. o Encourage a broader participation in the SMM data anlysis and combine this more fully with theory and other data sources--data obtained with other spacecraft such as the HINOTORI, P78-1, and ISEE-3 spacecrafts, and with the Very Large Array (VLA) and many other ground-based instruments. Many coordinated data sets, unprecedented in their breadth of coverage and multiplicity of sources, had been obtained within the structure of the Solar Maximum Year (SMY). o Stimulate joint studies, and publication in the general scientific literature. The intended primary benefit was for informal collaborations to be started or broadened at the Workshops with subsequent publications. o Provide a special publication resulting from this Workshop. o Provide a starting point of understanding for planning renewed full observations with the repaired SMM.
This book provides overviews of the new reduction as well as on the use of the Hipparcos data in a variety of astrophysical implementations. A range of new results are included. The Hipparcos data provide a unique opportunity for the study of satellite dynamics as the orbit covered a wide range of altitudes, showing in detail the different torques acting on the satellite. The book is accompanied by a DVD with the new catalogue and the underlying data.
Comet nuclei are the most primitive bodies in the solar system. They have been created far away from the early Sun and their material properties have been altered the least since their formation. Thus, the composition and structure of comet nuclei provide the best information about the chemical and thermodynamic conditions in the nebula from which our solar system formed. In this volume, cometary experts review a broad spectrum of ideas and conclusions based on in situ measurement of Comet Halley and remote sensing observations of the recent bright Comets Hale-Bopp and Hyakutake. The chemical character of comet nuclei suggests many close similarities with the composition of interstellar clouds. It also suggests material mixing from the inner solar nebula and challenges the importance of the accretion shock in the outer nebula. The book is intended to serve as a guide for researchers and graduate students working in the field of planetology and solar system exploration. Several special indexes focus the reader's attention to detailed results and discussions. It concludes with recommendations for laboratory investigations and for advanced modeling of comets, the solar nebula, and the collapse of interstellar clouds.
Our conference - opening today - has two aims in view: first, to commemorate some milestones in the development of the studies of close binary systems whose anniversaries fall in these years, as well as to take stock of our present knowledge accumulated through out preceding decades, in order to consider where do we go from here. This summer, 310 years will have elapsed since the first ec lipsing binary - Algol - was discovered in Bologna by Geminiano Montanari (1633-1687) to be a variable star; and 198 years have gone by since John Goodricke of York (1764-1786) established the fact that Algol's light changes were periodic. Moreover, it is al most exactly (to a month) now 100 years since Edward Charles Pickering (1846-1919) of Harvard Observatory in the United States took the first steps towards the development of systematic methods of analysis of the light changes of Algol and related systems - a topic which will constitute the major part of the programme of our present conference. The three dates recalled above illustrate that the discoverers of such celestial objects and observers of their light changes have been systematically ahead of the theoreticians endea vouring to understand the significance of the observed data by de cades and centuries in the past - a fact which, incidentally, con tinues to hold good (albeit with a diminishing lead-time) up to the present."
The book gives an extended review of theoretical and observational aspects of neutron star physics. With masses comparable to that of the Sun and radii of about ten kilometres, neutron stars are the densest stars in the Universe. This book describes all layers of neutron stars, from the surface to the core, with the emphasis on their structure and equation of state. Theories of dense matter are reviewed, and used to construct neutron star models. Hypothetical strange quark stars and possible exotic phases in neutron star cores are also discussed. Also covered are the effects of strong magnetic fields in neutron star envelopes and a comparison on neutron star models with observations.
This book is based partly on a. lecture course given at the University of Tri este, but mostly on my own research experience in the field of galactic chemical evolution. The subject of galactic chemical evolution was started and developed by Beat rice Tinsley in the seventies and now is a flourishing subject. This book is dedi cated to the chemical evolution of our Galaxy and aims at giving an up-to-date review of what we have learned since Tinsley's pioneering efforts. At the time of writing, in fact, books of this kind were not available with the exception of the excellent book by Bernard Pagel on "Nucleosynthesis and Chemical Evolution of Galaxies" (Cambridge University Press, 1997), and the subject of galactic chem ical evolution has appeared only as short chapters in books devoted to other subjects. Therefore, I felt that a book of this kind could be useful. The book summarizes the observational facts which allow us to reconstruct the chemical history of our Galaxy, in particular the abundances in stars and in terstellar medium; in the last decade, a great deal of observational work, mostly abundance determinations in stars in the solar vicinity, has shed light on the pro duction and distribution of chemical elements. Even more recently more abun dance data have accumulated for external galaxies at both low and high redshift, thus providing precious information on the chemical evolution of different types of galaxies and on the early stages of galaxy evolution."
The 10th ESLAB Symposium was held at Grossenzersdorf near Vienna on 10-13 June 1975 under the title 'The Scientific Satellite Programme During the Inter national Magnetospheric Study'. The Symposium was attended by an invited audience of 60 scientists from the ESA Member States, the United States, Japan, Canada and Austria. Following a report by the joint COSPAR-IUCSTP Special Working Group, the International Magnetospheric Study (lMS) is proposed as an international co operative enterprise of limited duration, having as its principal objective the achie vement of a comprehensive, quantitative understanding of the dynamical processes operating in the Earth's plasma and field environment. In order to accomplish this objective, it is thought to be necessary to carry out simultaneous measurements with nearly identical instrumentation at various points in space. These measurements will need to be made in combination with appropriate observations at or near the Earth's surface. Besides near-Earth observations by ground-based, rocket- and balloon-borne instrumentation, satellite investigations are expected to make an important contri bution to the IMS. A number of satellites assigned to magnetospheric research have recently been launched, or will be launched shortly, to be operational during the IMS. The European Space Agency has devoted two of its forthcoming scientific satellites - GEOS and ISEE-B - to magnetospheric and interplanetary research.
All theoretical and observational topics relevant to the understanding of the thermonuclear (Type Ia) supernova phenomenon are thoroughly and consistently reviewed by a panel including the foremost experts in the field. The book covers all aspects, ranging from the observations of SNe Ia at all stages and all wavelengths to the 2D and 3D modelling of thermonuclear flames in very dense plasmas. Scenarios for close binary evolution leading to SNe Ia are discussed. Particular emphasis is placed on the homogeneity vs. diversity of SNe Ia and on their use as standard candles to measure cosmological parameters. The book reflects the recent and very significant progress made in both the modelling of the explosions and in the observational field.
Even before the present Administrator of NASA, Daniel Goldin, made the phrase 'better, faster, cheaper' the slogan of at least the Office of Space Science, that same office under the Associate Administrator of Lennard Fisk and its Division of Solar System Exploration under the direction of Wes Huntress had begun a series of planetary spacecraft whose developmental cost, phase CID in the parlance of the trade, was to be held to under $150M. In order to get the program underway rapidly they chose two missions without the open solicitation now the hallmark of the program. One of these two missions, JPL' s Mars Pathfinder, was to be a technology demonstration mission with little immediate science return that would enable later high priority science missions to Mars. Many of the science investigations that were included had significant foreign contributions to keep NASA's cost of the mission within the Discovery budget. The second of these missions and the first to be launched was the Near Earth Asteroid Rendezvous mission, or NEAR, awarded to Johns Hopkins University's Applied Physics Laboratory. This mission was quite different than Mars Pathfinder, being taken from the list of high priority objectives of the science community and emphasizing the science return and not the technology development of the mission. This mission was also to prove to be well under the $150M phase CID cap.
Proceedings of IAU Symposium No. 95 held in Bonn, Federal Republic of Germany, 26-29 August 1980
IAU Symposium No. 121 was hosted by the Byurakan Astrophysical Observatory in Soviet Armenia, almost 30 years after Ambartsumian's pioneering ideas about galaxy activity were first published and almost exactly 20 years after the first Byurakan IAU symposium on nuclear activity (No. 29, "Non-stable Phenomena in Galaxies, May 1966). Although the proceedings of the first Byurakan symposium were not published in English, that conference provided a definitive impulse to the field, as Ambartsumian's ideas had done 10 years earlier. The Byurakan Astrophysical Observatory was thus a particularly appropriate setting for IAU 121. The symposium was also very timely since many new exciting results were presented which will surely revolutionize many of our present ideas about nuclear activity in galaxies and QSO's. The first results of the by now famous Markarian survey were presented by B.E. Markarian in the first Byurakan conference. Unfortunately, his untimely death prevented him from attending the second conference, but the influence of his fundamental work was certainly felt.
This book, in three parts, describes three phases in the development of the modern theory and calculation of the Moon's motion. Part I explains the crisis in lunar theory in the 1870s that led G.W. Hill to lay a new foundation for an analytic solution, a preliminary orbit he called the "variational curve." Part II is devoted to E.W. Brown's completion of the new theory as a series of successive perturbations of Hill's variational curve. Part III describes the revolutionary developments in time-measurement and the determination of Earth-Moon and Earth-planet distances that led to the replacement of the Hill Brown theory in 1984.
Leo Goldberg Kitt Peak National Observatory Tucson, Arizona 85726, U. S. A. Of all the reasons for exploring the Universe, none is more com pelling than the possibility of discovering intelligent life elsewhere in the Universe. Still the quest for extraterrestrial life has been near the bottom of the astronomers' list of priorities, not because the number of extraterrestrial civilizations is conjectured to be van ishingly small, but because our powers of detection were thought to be far too weak. About ten years ago, however, the growing reach of ra dio telescopes on the ground and of optical and infrared telescopes in space persuaded a number of thoughtful astronomers that the time for a more serious search had arrived. Accordingly, a joint Soviet-American conference on the problems of Communication with Extraterrestrial In telligence was convened at the Byurakan Astrophysical Observatory of the Armenian Academy of Sciences during September 5-11, 1971 and was soon followed by a number of other important meetings, notably a series of NASA-sponsored workshops in the USA held between January, 1975 and May, 1976. Since SETI is fundamentally an international undertaking and as tronomical methods and techniques are required for its pursuit, it is natural for the International Astronomical Union to lend its support by sponsoring conferences and otherwise facilitating cooperation among countries. The active involvement of the I. A. U."
Stars are born and die in clouds of gas and dust, opaque to most types of radiation, but transparent in the infrared. Requiring complex detectors, space missions and cooled telescopes, infrared astronomy is the last branch of this discipline to come of age. After a very successful sky survey performed in the eighties by the IRAS satellite, the Infrared Space Observatory, in the nineties, brought spectacular advances in the understanding of the processes giving rise to powerful infrared emission by a great variety of celestial sources. Outstanding results have been obtained on the bright comet Hale-Bopp, and in particular of its water spectrum, as well as on the formation, chemistry and dynamics of planetary objects in the solar system. Ideas on the early stages of stellar formation and on the stellar initial mass function have been clarified. ISO is the first facility in space able to provide a systematic diagnosis of the physical phenomena and the chemistry in the close environment of pre-main sequence stars, in the interstellar medium, and in the final stages of stellar life, using, among other indicators, molecular hydrogen, ubiquitous crystalline silicates, water and ices. ISO has dramatically increased our ability to investigate the power production, excitation and fuelling mechanism of galaxies of every type, and has discovered a new very cold dust component in galaxies. ISO has demonstrated that luminous infrared galaxies were brighter and much more numerous in the past, and that they played a dominant role in shaping present day galaxies and in producing the cosmic infrared background.
Red giant and supergiant stars have long been favorites of professional 6 and amateur astronomers. These enormous stars emit up to 10 times more energy than the Sun and, so, are easy to study. Some of them, specifically the pulsating long-period variables, significantly change their size, brightness, and color within about a year, a time scale of interest to a single human being. Some aspects of the study of red giant stars are similar to the study of pre-main-sequence stars. For example, optical astronomy gives us a tantalizing glimpse of star forming regions but to really investi gate young stars and protostars requires infrared and radio astronomy. The same is true of post-main-sequence stars that are losing mass. Optical astronomers can measure the atomic component of winds from red giant stars that are undergoing mass loss at modest rates 6 (M $ 10- M9/yr.). But to see dust grains and molecules properly, 5 especially in stars with truly large mass loss rates, ~ 10- M9/yr, one requires IR and radio astronomy. As this stage of copious mass loss only lasts for ~105 years one might be tempted to ask, "who cares?".
In physics, the idea of extra spatial dimensions originates from Nordstom s 5-dimensional vector theory in 1914, followed by Kaluza-Klein theory in 1921, in an effort to unify general relativity and electromagnetism in a 5 dimensional space-time (4 dimensions for space and 1 for time). Kaluza Klein theory didn t generate enough interest with physicist for the next five decades, due to its problems with inconsistencies. With the advent of supergravity theory (the theory that unifies general relativity and supersymmetry theories) in late 1970 s and eventually, string theories (1980s) and M-theory (1990s), the dimensions of space-time increased to 11 (10-space and 1-time dimension). There are two main features in this book that differentiates it from other books written about extra dimensions: The first feature is the coverage of extra dimensions in time (Two Time physics), which has not been covered in earlier books about extra dimensions. All other books mainly cover extra spatial dimensions. The second feature deals with level of presentation. The material is presented in a non-technical language followed by additional sections (in the form of appendices or footnotes) that explain the basic equations and formulas in the theories. This feature is very attractive to readers who want to find out more about the theories involved beyond the basic description for a layperson. The text is designed for scientifically literate non-specialists who want to know the latest discoveries in theoretical physics in a non-technical language. Readers with basic undergraduate background in modern physics and quantum mechanics can easily understand the technical sections. Part I starts with an overview of the Standard Model of particles and forces, notions of Einstein s special and general relativity, and the overall view of the universe from the Big Bang to the present epoch, and covers Two-Time physics. 2T-physics has worked correctly at all scales of physics, both macroscopic and microscopic, for which there is experimental data so far. In addition to revealing hidden information even in familiar "everyday" physics, it also makes testable predictions in lesser known physics regimes that could be analyzed at the energy scales of the Large Hadron Collider at CERN or in cosmological observations." Part II of the book is focused on extra dimensions of space. It covers the following topics: The Popular View of Extra Dimensions, Einstein and the Fourth Dimension, Traditional Extra Dimensions, Einstein's Gravity, The Theory Formerly Known as String, Warped Extra Dimensions, and How Do We Look For Extra Dimensions?"
The Encyclopedia of Cosmology, first published in 1993, recounts the history, philosophical assumptions, methodological ambiguities, and human struggles that have influenced the various responses to the basic questions of cosmology through the ages, as well as referencing important scientific theories. Just as the recognition of social conventions in other cultures can lead to a more productive perspective on our own behaviour, so too a study of the cosmologies of other times and places can enable us recognise elements of our own cosmology that might otherwise pass as inevitable developments. Apart from modern natural science, therefore, this volume incorporates brief treatments of Native American, Cave-Dweller, Chinese, Egyptian, Islamic, Megalithic, Mesopotamian, Greek, Medieval and Copernican cosmology, leading to an appreciation of cosmology as an intellectual creation, not merely a collection of facts. It is a valuable reference tool for any student or academic with an interest in the history of science and cosmology specifically.
This volume tries to summarize the status of observational knowledge of the Kuiper Belt. Its recent discovery has revitalized the astromomical study of the Solar System and is beginning to open new and unexpected windows on the physics of planetesimal accretion. With more and better observational data being obtained at the technological limit of current facilities, a new perception of the relationships that exist among the various classes of small Solar System bodies has emerged. The new observations have also motivated a number of fascinating theoretical studies in Solar System dynamics.
Stellar mass loss is an essential part of the cycling of material from the interstellar medium into stars and back, and must be understood if we are to model processes on galactic to cosmological scales. The study of stellar winds and the effects of stellar mass loss has reached a particularly exciting stage where observational capabilities are increasingly able to provide interesting constraints on models and theories. Recent resu1ts from theoretical and observational work for both hot and cool stars with substantial winds have led to the suggestion that a combination of pulsation with other mechanisms makes for particularly efficient mass loss from stars. This provided the original motivation for the organization of this workshop. The conference was organized along relatively conventional lines according to the types of objects being scrutinized. However the true unity of the proceedings comes from the interplay of the mechanisms involved. For example, for the cool, luminous Mira variables, pulsation leads to shock waves that extend the atmosphere, enhancing dust formation; radiation pressure on dust drives the wind, cooling the atmosphere and in some cases suppressing the shocks. Similarly for the Be stars, both pulsation (in this case, non-radial) and radiation pressure (due to UV resonance lines) are expected to be important, and this expectation is at least qualitatively borne out by the observations.
The Solar-B satellite was launched in the morning of 23 September 2006 (06:36 Japan time) by the Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), and was renamed to Hinode ('sunrise' in Japanese). Hinode carries three - struments; the X-ray telescope (XRT), the EUV imaging spectrometer (EIS), and the solar optical telescope (SOT). These instruments were developed by ISAS/JAXA in cooperation with the National Astronomical Observatory of Japan as domestic partner, and NASA and the Science and Technology Facilities Council (UK) as international partners. ESA and N- wegian Space Center have been providing a downlink station. All the data taken with Hinode are open to everyone since May 2007. This volume combines the ?rst set of instrumental papers of the Hinode mission (the mission overview, EIS, XRT, and the database system) published in volume 243, Number 1 (June 2007), and the second set of papers (four papers on SOT and one paper on XRT) published in Volume 249, Number 2 (June 2008). Another SOT paper cited as Tarbell et al. (2008) in these papers will appear later in Solar Physics.
This volume comprises nine articles on Islamic astronomy published since 1989 by Benno van Dalen. Van Dalen was the first historian of Islamic astronomy who made full use of the new possibilities of computers in the early 1990s. He implemented various statistical and numerical methods that can be used to determine the mathematical properties of medieval astronomical tables, and utilized these to obtain entirely new, until then unattainable historical results concerning the interdependence of individual tables and hence of entire astronomical works. His programmes for analysing tables, making sexagesimal calculations and converting calendar dates continue to be widely used. The five articles in the first part of this collection explain the principles of a range of statistical methods for determining unknown parameter values underlying astronomical tables and present extensive step-by-step examples for their use. The four articles in the second part provide extensive studies of materials in unpublished primary sources on Islamic astronomy that heavily depend on these methods. The volume is completed with a detailed index.
The reviews presented in this volume cover a huge range of cluster of galaxies topics. Readers will find the book essential reading on subjects such as the physics of the ICM gas, the internal cluster dynamics, and the detection of clusters using different observational techniques. The expert chapter authors also cover the huge advances being made in analytical or numerical modeling of clusters, weak and strong lensing effects, and the large scale structure as traced by clusters.
JAXA 's Kaguya mission was successfully launched to the Moon on September 14, 2007 reaching its nominal 100 km circular orbit on October 19 after releasing two subsatellites Okina and Ouna in elliptical orbits with perilunes of 100 km and apolunes of 2400 and 800 km respectively. Observations were obtained for 10 months during the nominal mission beginning in mid-December 2007 followed by 8 month extended mission where data were obtained in lower orbits. The articles in this book were written by experts in each of the scientific areas of the Kaguya mission, and describe both the mission and the individual scientific investigations, including their objectives, the specifications of the instruments, their calibrations and initial results. This book is essential reading to all potential users of the Kaguya data and those interested in the scientific results of the mission, the properties of the lunar surface and crust and planetary exploration in general.
Since 1967, the main scientific events of the General Assemblies of the International Astronomical Union have been published in the separate series, Highlights of Astronomy. The present Volume 11 presents the major scientific presentations made at the XXIIIrd General Assembly, August 18-30, 1997, in Kyoto, Japan. The two volumes (11A+B) contain the texts of the three Invited Discourses as well as the proceedings or extended summaries of the 21 Joint Discussions and two Special Sessions held during the General Assembly. |
You may like...
Sky Guide 2026 - Southern Africa
Astronomical Society of Southern Africa
Paperback
|