![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Astronomy, space & time
These are the proceedings of a meeting in honour of Massimo Capaccioli at the occasion of his 70th birthday. The conference aimed at summarizing the results from the main current and past digital sky survey projects and at discussing how these can be used to inspire ongoing projects and better plan the future ones. Over the last decades, digital sky surveys performed with dedicated telescopes and finely-tuned wide-field cameras, have revolutionized astronomy. They have become the main tool to investigate the nearby and far away universe, thus providing new insights in the understanding of the galaxy structure and assembly across time, the dark components of the universe, as well as the history of our own galaxy. They have also opened the time domain leading to a new understanding of the transient phenomena in the universe. By providing public access to top quality data, digital surveys have also changed the everyday practice of astronomers who have become less dependent on direct access to large observing facilities. The full scientific exploitation of these surveys has also triggered significant advances in both space and ground based technology and in the field of multi-object spectroscopy. The various sections of this book are devoted to different relevant aspects of astrophysics in the era of digital sky surveys and include both review and shorter, more focused contributions.
Introduction (H. Kikuchi). Cosmic Dusty Plasmas: Plasma Tail and Dust Tail of Comets (T. Saito et al.). Laboratory Dusty Plasmas: Theory and Experiment: Coherent Structures in Lowtemperature Dusty Plasmas (P.K. Shukla, N.N. Rao). Meteorologicoelectric Environment and EHD: The Mechanism of Electrohydrodynamic Wind Generation in a Lower Atmosphere (A. Watson, J.S. Chang). Selforganization and Turbulence: Selforganization Processes in Turbulent Atmosphere and Methods for Their Study (A.A. Lazarev, S.S. Moiseev). Lightning Discharges and Laboratory Simulation: A New Model Lightning (J.W. Warwick). Atmospheric Electricity and Noise: Jet Stream Electrodynamics (T. Ogawa). Magnetospheric Noise and Pulsations: Local Time Dependence of Wave Characteristics of Pi2 Pulsations Observed at Synchronous Orbit (H. Takeuchi et al.). Planetary and Solar Noise and Plasmas: Nonauroral Lights on Jupiter's Dark Side (J.W. Warwick). Galactic Noise and Plasmas: A Systematic Study of Dense Cloud Cores and Star Formation (A. Mizuno, Y. Fukui). Fluctuations, Chaos, Reconnection, and Acceleration. Ball Lightning and Microwave Discharges. 40 additional articles. Index.
Two specialized new instruments for ESO's VLT, VISIR and CRIRES, spawned the idea for this workshop. CRIRES is a dedicated very high resolution infrared spectrograph; VISIR features a high resolution spectroscopic mode. Together, the instruments combine the sensitivity of an 8m-telescope with the now well-established reliability of VLT-facility instruments. High resolution here means that lines in cool stellar atmospheres and HII-regions can be resolved. The astrophysical topics discussed in this rather specialized workshop range from the inner solar system to active galactic nuclei. There are many possibilities for new discoveries with these instruments, but the unique capability, which becomes available through high-resolution infrared spectroscopy, is the observation of molecular rotational-vibrational transitions in many astrophysical environments. Particularly interesting and surprising in this context, many papers on modeling and laboratory spectroscopy at the workshop appear to indicate that astronomical observations are lagging a bit behind in this field. The papers are an interesting mix of reports from existing high resolution facilities, reports on modeling efforts of synthetic spectra and reports on laboratory spectra. In this sense, a fruitful exchange between molecular physics and astronomy was again accomplished and is documented in this volume.
The papers in this study cover a range of scenarios, from disk and envelope around young stellar objects and protostars through to more aged stars and highly-evolved objects which exhibit considerable mass loss features. Significant advances and developments in observing facilities, instrumentation, computing power and techniques are described, together with a variety of theories, suggestions, observations and models. The formation, composition, effects and evolution of the material surrounding a stellar environment are also included.
The Swiss Society for Astrophysics and Astronomy organizes each year in the late winter or early spring an advanced course. The format of the school is always iden tical: three leading lecturers are invited to cover the subject in nine or ten lectures each and to deliver a written version of their lecture notes. Lectures are held in the morning and late afternoon, thus leaving ample time for discussion and skiing. These arrangements prove very convivial and lead to an excellent atmosphere in which to learn exciting new subjects and establish contacts with colleagues. A wide variety of people attend the school, including many young students, mostly from Europe, and some experienced researchers. The 20th Advanced Course of the Swiss Society for Astrophysics and Astronomy took place in Les Diablerets from 1 to 6 April 1990. It was devoted to observational and theoretical aspects of active galactic nuclei. The previous advanced courses of the Swiss Society for Astrophysics and Astronomy have regularly taken place in Saas-Fee, a small resort in the Swiss Alps, hence the name "Saas-Fee" used to de scribe the courses and lecture notes. In the last three years, however, the course was organized in Leysin and in Les Diablerets, both also situated in the Swiss Alps."
J 2 J. MICHAEL SHl: LL, HARLEY A. THRO: \SOX, JR., A: '>D S. ALAN STER: \3 I University of Colorado, Dept. of Astrophysical. Planetary, &. Atmospheric Sciences 2 University of Wyoming and KASA Headquarters, Code SR 3 Southwest Research Institute, Boulder Office On May 15-17. 1995, three Rocky Motultain research institutions hosted a confererJce to dis cuss the scientific basis, teclmological options, and programmatic implications of a large-scale effort to find and study Earth-like planets outside the Solar System. Our workshop attracted scientists, erJgineers, space agency administrators, and the public media to discuss and debate the most promising teclmological options and opportunities. Major programs and proposals to search for and study exo-planets were preserJted and discussed. In addition, our meeting - incided .with NASA's "roadmap" study for the Exploration of Neighboring Planetary Systems ( "'\PS). Our meeting was the first international confererJce on this subject, affording an op portunity for several members of this study to participate in the debates over new technologies. Our meeting proyed to be timely. Shortly thereafter, in late 199.5 and early 1996, two groups of astronomers annotulced the first discoveries of planetary companions to nearby stars. using high-precision radial velocity measuremerJts to detect the gravitational reflex motion of the star. The first three detections include a Jupiter-mass companion to the solar-like star. 51 Pegasi, and two remarkable objects of mass at least 2. 3 and 6."
This book is the sixth volume under the title Organizations and Strategies in Astronomy (OSA). The OSA series is intended to cover a large range of fields and themes. In practice, one could say that all aspects of astronomy-related life and environment are considered in the spirit of sharing specific expertise and lessons learned. The chapters of this book are dealing with socio-dynamical aspects of the astronomy (and related space sciences) community: characteristics of organizations, strategies for development, legal issues, operational techniques, observing practicalities, educational policies, journal and magazine profiles, public outreach, publication studies, relationships with the media, research communication, evaluation and selection procedures, research indicators, national specificities, contemporary history, and so on. The experts contributing to this volume have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy while providing specific detailed information and sometimes enlightening lessons learned' sections. The book concludes with an updated bibliography of publications related to socio-astronomy and to the interactions of the astronomy community with the society at large. This volume will be most usefully read by researchers, teachers, editors, publishers, librarians, sociologists of science, research planners and strategists, project managers, public-relations officers, plus those in charge of astronomy-related organizations, as well as by students aiming at a career in astronomy or related space science.
over to nominal operations and began making our groundbreaking science observations. Remarkably, the IBEX project was able to do all this work including developing an entirely new launch capability, building and ying a unique and highly specialized spacecraft and instrument suite, and maintaining full funding for our Education and Public Outreach and Phase E science activities, while still under-running our original cost cap (as modi ed by NASA-directed changes), by roughly three-quarters of a million dollars. This book comprises a set of papers that describe the IBEX science, instruments, and mission and put these in the context of the existing knowledge of the interstellar interaction at the time of the launch. The book sets the stage for research that will be based on data from the IBEX mission. We sincerely hope that future researchers, authors and students will use this information to help in their studies. Chapter 1 [McComas et al. ] provides an overview of the entire IBEX program including the IBEX science, hardware, and mission. Chapter 2 describes the IBEX spacecraft and ight system [Scherrer et al. ]. Chapters 3-4 provide the details of the IBEX-Hi instrument [Funsten et al. ] and background monitor that is built into it [Allegrini et al. ], while Chapters 5-7 describe the IBEX-Lo instrument [Fuselier et al. ], how IBEX-Lo can measure the interstellar neutrals directly entering the heliosphere [Moebius et al.
The Mars Science Laboratory is the latest and most advanced NASA roving vehicle to explore the surface of Mars. The Curiosity rover has landed in Gale crater and will explore this region assessing conditions on the surface that might be hospitable to life and paving the way for later even more sophisticated exploration of the surface. This book describes the mission, its exploration and scientific objectives, studies leading to the design of the mission and the instruments that accomplish the objectives of the mission. This book is aimed at all those engaged in Martian studies as well as those interested in the origin of life in other environments. It will be a valuable reference for anyone who uses data from the Mars Science Laboratory. Previously published in Space Science Reviews journal, Vol. 170/1-4, 2012.
At the opening of the "Third Meeting on Celestial Mechanics - CELMEC III", strong sensations hit our minds. The conference (18-22 June 2001) was being held in Villa Mondragone, a beautiful complex of buildings and gardens located within the township of Monte Porzio Catone, on the hills surrounding Rome. A former papal residence, the building has been recently restored by the University of Rome "Tor Vergata" to host academic activities and events. The conference room is called "Salone degli Svizzeri": here, Gregory XIII, on February 24, 1582, gave its sanction to the reform of the Julian calendar and declared officially in use the calendar still adopted nowadays. The magnificent high walls and tall ceiling strongly resounded, giving to our voice a peculiar Vatican sound, which took us by surprise. May be - we thought - a distant echo of the very words of Gregory XIII proclaiming the modem calendar was still haunting the room. Around us, in the audience, many countries were represented, thus indicating that the idea of putting together the three "souls" of modem Celestial Mechanics - perturbation theories, solar and stellar system studies, spaceflight dynamic- had been successful. CELMEC III is in fact the latest of a series of meetings (the first two editions took place in 1993 and 1997 in L' Aquila, Italy) whose aim is to establish a common ground among people working in Celestial Mechanics, yet belonging to different institutions such as universities, astronomical observatories, research institutes, space agencies and industries.
Is planet earth the end of the line, or is space itself the next
stop?
H.T. MacGilLIVRAY Royal Observatory Blackford Hill Edinburgh EH9 3HJ Scotland U.K. lAU Symposium No. 161 on 'Astronomy from Wide-Field Imaging', held in Potsdam, Germany, during 23-27th August 1993, was the first conference organised by the recently-formed Working Group of lAU Commission 9 on 'Wide-Field Imaging'. This Working Group was instigated during the XXIst meeting of the General Assembly of the International Astronomical Union in Buenos Aires in 1991, and represented a merging of the former formal lAU Working Group on 'Astronomical Photography' and the informal 'Digitised Optical Sky Surveys' Working Group. Dr. Richard West was 'invited' to be Chairperson, and hence was given the daunting task of organising the Group from scratch. The very fact that the first conference after only two years was a major lAU Symposium says much about the determination and enthusiasm of Richard West to fulfilling the aims of the new Working Group. The siting of the conference in Potsdam in formerly East Germany provided an excellent opportunity to advantage from the political changes in Eastern Europe. Good access to the meeting was possible by scientists from Eastern European countries, allowing exchange of information on the very important Wide-Field facilities in both East and West, information on the rich archives of photographic plates that exist in both East and West, and allowing discussions between scientists facing very similar problems in both East and West.
The existence of blue straggler stars, which appear younger, hotter, and more massive than their siblings, is at odds with a simple picture of stellar evolution. Such stars should have exhausted their nuclear fuel and evolved long ago to become cooling white dwarfs. They are found to exist in globular clusters, open clusters, dwarf spheroidal galaxies of the Local Group, OB associations and as field stars. This book summarises the many advances in observational and theoretical work dedicated to blue straggler stars. Carefully edited extended contributions by well-known experts in the field cover all the relevant aspects of blue straggler stars research: Observations of blue straggler stars in their various environments; Binary stars and formation channels; Dynamics of globular clusters; Interpretation of observational data and comparison with models. The book also offers an introductory chapter on stellar evolution written by the editors of the book.
Rotation is ubiquitous at each step of stellar evolution, from star formation to the final stages, and it affects the course of evolution, the timescales and nucleosynthesis. Stellar rotation is also an essential prerequisite for the occurrence of Gamma-Ray Bursts. In this book the author thoroughly examines the basic mechanical and thermal effects of rotation, their influence on mass loss by stellar winds, the effects of differential rotation and its associated instabilities, the relation with magnetic fields and the evolution of the internal and surface rotation. Further, he discusses the numerous observational signatures of rotational effects obtained from spectroscopy and interferometric observations, as well as from chemical abundance determinations, helioseismology and asteroseismology, etc. On an introductory level, this book presents in a didactical way the basic concepts of stellar structure and evolution in "track 1" chapters. The other more specialized chapters form an advanced course on the graduate level and will further serve as a valuable reference work for professional astrophysicists.
The 34th Saas-Fee advanced course of the Swiss Society of Astronomy and Astrophysics (SSAA) took place from March 15 to 20, 2004, in Davos, on the subject of The Sun, Solar Analogs and the Climate. PresentlytheSwissmountainresortofDavosisprobablymostwellknown for hosting an event on globalization. However, it is because Davos also happens to be the seat of the Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center, that this course on a "global" subject was hosted here. Exceptionally, the topic of this course was not purely astrophysical, but themembersoftheSSAAdecidedtosupportitallthesameduetothetimely topic of global warming and its possible link to solar variations. In these times of concern about global warming, it is important to und- stand solar variability and its interaction with the atmosphere. Only in this way can we distinguish between the solar and anthropogenic contributions to the rising temperatures. Therefore, this course addressed the observed va- ability of the Sun and the present understanding of the variability's origin and its impact on the Earth's climate. Comparing the solar variability with that of solar analog stars leads to a better understanding of the solar activity cycle and magnetic activity in general, and helps us to estimate how large the solar variations could be on longer time scales. Inspiteofthefantasticweatherandsnowconditionswhichreignedduring this week, the participants assiduously took part in the lectures. This is proof ofthehighqualityofthelecturesthatthethreespeakers,JoannaHaigh,Mike Lockwood and David Soderblom, delivered. We deeply thank them for their contributions and e?orts and hope that the readers will enjoy the book as much as we enjoyed their lectures.
Continuum radio emission and fine structure (in particular millisecond spikes) have recently raised interest as diagnostic tools for the interpretation of energy release and particle acceleration in flares. In the circles of the European solar radio astronomers, loosely organized in CESRA, the idea of a workshop came up intended for active observers of the impulsive phase of flares in radio and associated emissions. The scientific organizing committee included A.D. Benz (chairman), A. Magun, M. Pick, G. Trottet, and P. Zlobec. The workshop was held on May 27-31, 1985 in the castle of Duino near Trieste, Italy. The meeting intended to find a common terminology, to compare radio observations with measurements in other emissions and to confront observations with theoretical concepts. We have achieved a representative summary on the current status of the field and a clear perspective for the next cycle. This volume contains the reviews and a selection of contributions and extended abstracts of papers presented at the workshop. I wish to thank the local organizers, in particular A. Abrami, M. Comari, F. Depolli, L. Fornasari, M. Messerotti (chairman), M. Nonino, and P. Zlobec. Financial support was graciously provided by the Italian Research Council (CNR). Most of all, however, I would like to express my thankfulness to our host, His Highness Prince Raimondo della Torre e Tasso, for his invaluable hospitality. We are deeply sorry to hear of his passing in the meantime. To his memory these proceedings are dedicated.
The idea for another conference on the theme of Infrared Astronomy with Arrays actually goes back to March 1987. At a party held in my home at the end of the Hilo conference, excitement was running high and everyone present was in favor of another meeting. I recall suggesting to Al Fowler that the next meeting could be in Tucson. Despite Al's reply to the effect that Hawaii was a much nicer location, a meeting was held in Tucson three years later. That meeting focussed more on the astrophysics which had been accomplished with the detectors, rather than on techniques and methods. However, it was already apparent in February of 1990 that a new generation of larger m arrays would soon supersede the 64x64 class of devices and so, having just moved from the UK Infrared Telescope unit in Hawaii to join with Eric Becklin in his move to UCLA, it seemed to me that another Hilo-style conference was appropriate, and Eric agreed.
This symposium was devoted to a new celestial mechanics whose aim has become the study of such objects' as the planetary system, planetary rings, the asteroidal belt, meteor swarms, satellite systems, comet families, the zodiacal cloud, the preplanetary nebula, etc. When the three-body problem is considered instead of individual orbits we are, now, looking for the topology of extended regions of its phase space. This Symposium was one step in the effort to close the ties between two scientific families: the observationally-oriented scientists and the theoretically-oriented scientists.
Advanced technologies in astronomy at various wavelengths have provided us with high resolution and high quality data on the QSO population. This meeting was aimed at understanding the morphology and nature of the host galaxies and environments of QSOs. The invited lectures as well as the contributed and poster papers highlighted the main issues of current research: the stellar and gaseous content of the underlying galaxy; the characterization of the population of companions and the nature of their interaction with the host galaxy; the connection between radio-loud QSO and radio-galaxies, and QSOs and ULIRGs; the evolution with redshift of both the host galaxy and its environment, and the main implications in theories of galaxy formation and evolution. This volume provides a valuable overview and timely update of the exciting and rapidly developing field of QSO hosts and their environments - essential reading for graduate students and researchers.
The fundamentals of astrochemistry in the gas phase are relatively
well established, in contrast to the special relevance attributed
to processes involving interstellar dust grains - the solid
component of matter diffused among the stars.
The motivation for the workshop on which this book is based was the discovery in recent years of a large number of binary and millisecond radio pulsars, in the galactic disk as well as in globular star clusters, the oldest stellar systems in our galaxy. These discoveries have revolutionized our thinking on many aspects concerning the interior structure and evolution of neutron stars, and have revived the interest in the study of neutron star physics in general. In this book some three dozen of the world's experts in the field of radio pulsars, X-ray binaries, stellar evolution, neutron star interiors and stellar dynamics review the latest observational discoveries as well as the current theoretical thinking on the formation and physics of binary X-ray sources and of the binary and milli-second pulsars. These include discoveries such as that of the elevent millisecond pulsars in the globular cluster 47 Tucanae, the relativistic effects in the new double neturon star system PSR 1534+12 and spectacular results from Germany's ROSAT X-Ray Observatory.
Lunar domes are structures of volcanic origin which are usually difficult to observe due to their low heights. The Lunar Domes Handbook is a reference work on these elusive features. It provides a collection of images for a large number of lunar domes, including telescopic images acquired with advanced but still moderately intricate amateur equipment as well as recent orbital spacecraft images. Different methods for determining the morphometric properties of lunar domes (diameter, height, flank slope, edifice volume) from image data or orbital topographic data are discussed. Additionally, multispectral and hyperspectral image data are examined, providing insights into the composition of the dome material. Several classification schemes for lunar domes are described, including an approach based on the determined morphometric quantities and spectral analyses. Furthermore, the book provides a description of geophysical models of lunar domes, which yield information about the properties of the lava from which they formed and the depth of the magma source regions below the lunar surface.
This volume contains the written versions of the lectures given at the 26th course of the renowned Saas-Fee series. The book represents a comprehensive and up-to-date review of the field of galaxy interaction. Nowadays, galaxies are no longer seen as immutable objects: they evolve, interact, merge, blaze, and reshape. Dynamic forces can induce powerful stellar activity able to transform the matter composition and morphology of galaxies. The lectures included in this book aim at a better understanding of these remarkable and fascinating phenomena. Though the book is intended for graduate students and young post-docs in astrophysics, it contains more advanced and original material, as well as historical perspectives, which will be of great interest to experts and astronomy teachers also. |
![]() ![]() You may like...
Thinking About Oneself - The Place and…
Waldomiro J. Silva Filho, Luca Tateo
Hardcover
R3,365
Discovery Miles 33 650
|