![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Astronomy, space & time
The continuing success of helio- and asteroseismology in studying the internal structure and dynamics of the Sun, and of other single stars, has been highlighted in recent years by many topical meetings. The present Proceedings document the first Seismology symposium ever held in conjunction with an IAU General Assembly. This substantially influenced the layout of the scientific programme and demonstrates the vitality of this field of astronomy. The invited reviews are intended to address an audience that includes many non-specialists. Therefore, this volume is particularly valuable as an introduction to the general concepts of the field, and for conveying the excitement that comes with discussions of the most recent observational and theoretical results. There are two chapters on the many facets of asteroseismology, which also compare solar and stellar achievements. A major focus of the symposium was the new developments resulting from the observations of unprecedented quality obtained from global multi-site networks, and especially from the Solar and Heliospheric Observatory SoHO, currently continuing its observations from the Lagrangian point L1. From the center of the Sun to its outer layers, the reader will learn how modern diagnostic techniques reveal the inextricable links between the complex structure of the interior and atmosphere of our nearest star. The book is recommended for undergraduates, postgraduates, and professionals with a strong interest in modern developments in astrophysics.
Light scattering and absorption by small homogeneous particles can be worked-out exactly for spheres and infinite cylinders. Homogeneous particles of irregular shapes, when averaged with respect to rotation, have effects that can in general be well-approximated by reference to results for these two idealised cases. Likewise, small inhomogeneous particles have effects similar to homogeneous particles of the same average refractive index. Thus most problems can be solved to a satisfactory approximation by reference to the exact solutions for spheres and cylinders, which are fully stated here in the early part of the book. The sum of scattering and absorption, the extinction, is too large to be explained by inorganic materials, provided element abundances in the interstellar medium are not appreciably greater than solar, H 0 and NH3 being essentially excluded in the 2 general medium, otherwise very strong absorptions near 3p, m would be observed which they are not. A well-marked extinction maximum in the ultraviolet near 2200A has also not been explained satisfactorily by inorganic materials. Accurately formed graphite spheres with radii close to O.02p, m could conceivably provide an explanation of this ultraviolet feature but no convincing laboratory preparation of such spheres has ever been achieve
Few launch vehicles are as iconic and distinctive as NASA's behemoth rocket, the Saturn V, and none left such a lasting impression on those who watched it ascend. Developed with the specific brief to send humans to the Moon, it pushed rocketry to new scales. Its greatest triumph is that it achieved its goal repeatedly with an enviable record of mission success. Haynes' Saturn V Manual tells the story of this magnificent and hugely powerful machine. It explains how each of the vehicle's three stages worked; Boeing's S-IC first stage with a power output as great as the UK's peak electricity consumption, North American Aviation's S-II troubled second stage, Douglas's workhorse S-IVB third stage with its instrument unit brain - as much a spacecraft as a rocket. From the decision to build it to the operation of its engines' valves and pumps, this lavishly illustrated and deeply informative book offers a deeper appreciation of the amazing Saturn V.
It has been more than five decades ago that Henk van de Hulst predicted the observability of the 21-cm line of neutral hydrogen (HI ). Since then use of the 21-cm line has greatly improved our knowledge in many fields and has been used for galactic structure studies, studies of the interstellar medium (ISM) in the Milky Way and other galaxies, studies of the mass distribution of the Milky Way and other galaxies, studies of spiral struc ture, studies of high velocity gas in the Milky Way and other galaxies, for measuring distances using the Tully-Fisher relation etc. Regarding studies of the ISM, there have been a number of instrumen tal developments over the past decade: large CCD's became available on optical telescopes, radio synthesis offered sensitive imaging capabilities, not only in the classical 21-cm HI line but also in the mm-transitions of CO and other molecules, and X-ray imaging capabilities became available to measure the hot component of the ISM. These developments meant that Milky Way was no longer the exclusive playground for ISM studies and that by reaching out to other galaxies astronomy had gained the advantage of having an "outside" view, though at the expense of giving up some linear resolution. Studies of the ISM in other galaxies are intimately connected to studies of the ISM in the Milky Way."
Lonely Planet Kids' Amazing Night Sky Atlas, the follow up to our bestselling Amazing World Atlas, looks upwards to the skies for a fun- and fact-packed guide to astronomy. Featuring a mixture of photography and illustration, this hardcover book explores both the science of stargazing - explaining what can be seen in the night sky in different parts of the world - and the practicalities, with handy tips such as how to use a telescope. It also covers the background and history of astronomy, travelling around the world to discover the different stories cultures have told about the night sky and the influence the Moon, the stars and the movement of the planets have had on their people. Expert insights come from David Hawksett, a science writer, lecturer and researcher who has previously worked as the Science & Technology Consultant at Guinness World Records and written for Sky at Night Magazine. Perfect for learning at home, in the classroom or being given as a gift, Lonely Planet Kids' Amazing Night Sky Atlas will inspire budding astronomers and excite them for a lifetime of looking to the skies. Contents includes: Introduction to the Night Sky History of stargazing How to use a telescope Constellations Seasons in the Sky The Zodiac Patterns in the Sky - a global guide Planets Stars Supernovas Black Holes Nebulas Meteor Showers Eclipses Night sky legends from around the world About Lonely Planet Kids: Lonely Planet Kids - an imprint of the world's leading travel authority Lonely Planet - published its first book in 2011. Over the past 45 years, Lonely Planet has grown a dedicated global community of travellers, many of whom are now sharing a passion for exploration with their children. Lonely Planet Kids educates and encourages young readers at home and in school to learn about the world with engaging books on culture, sociology, geography, nature, history, space and more. We want to inspire the next generation of global citizens and help kids and their parents to approach life in a way that makes every day an adventure. Come explore!
THE EDITORS: DAVID L. BLOCK AND KENNETH C. FREEMAN (SOC CO-CHAIRS), IVANIO PUERARI, ROBERT GROESS AND LIZ K. BLOCK 1. Harvard College Observatory, 1958 The past century has truly brought about an explosive period of growth and discovery for the physical sciences as a whole, and for astronomy in particular. Galaxy morphology has reached a renaissance . . The year: 1958. The date: October 1. The venue: Harvard College Observatory. The lecturer: Walter Baade. With amazing foresight, Baade penned these words: "Young stars, supergiants and so on, make a terrific splash - lots of light. The total mass of these can be very small compared to the total mass of the system". Dr Layzer then asked the key question: " . . . the discussion raises the point of what this classification would look like if you were to ignore completely all the Population I, and just focus attention on the Population II . . . " We stand on the shoulders of giants. The great observer E. E. Barnard, in his pioneering efforts to photograph the Milky Way, devoted the major part of his life to identifying and numbering dusty "holes" and dust lanes in our Milky Way. No one could have dreamt that the pervasiveness of these cosmic dust masks (not only in our Galaxy but also in galaxies at high redshift) is so great, that their "penetration" is truly one of the pioneering challenges from both space-borne telescopes and from the ground.
Astronomical photographs contain an enormous amount of information. This presents extremely interesting problems when one wishes to produce digitized sky atlases, to archive the digitized material, to develop sophisticated devices to do the digitizing, and to create software to process the vast amounts of data. All these activities are necessary to be able to carry out astronomy work. One such activity is the important, large-scale optical identification of objects which also emit radiation at other wavelengths. Other activities of the past decade include a multiplicity of surveys that have been made on galaxies and clusters of galaxies. This book treats, in five sections, the existing and future surveys, their digitization and their impact on astronomy. It is designed to serve as a reference for people in the field and for those who wish to engage in using or producing sky surveys.
This Second Edition of Sun, Earth and Sky updates the popular text by providing comprehensive accounts of the most recent discoveries made by five modern solar spacecraft during the past decade. Their instruments have used sound waves to peer deep into the Sun's inner regions and measure the temperature of its central nuclear reactor, and extended our gaze far from the visible Sun to record energetic outbursts that threaten Earth. Breakthrough observations with the underground Sudbury Neutrino Observatory are also included, which explain the new physics of ghostly neutrinos and solve the problematic mismatch between the predicted and observed amounts of solar neutrinos. This new edition of Sun, Earth and Sky also describes our recent understanding of how the Sun's outer atmosphere is heated to a million degrees, and just where the Sun's continuous winds come from. As humans we are more intimately linked with our life-sustaining Sun than with any other astronomical object, and the new edition therefore provides modern interpretations of ozone depletion and global warming that are related to both the Sun and to human activities. introduces the Sun and its physics, and describes all aspects of the Sun's interaction with us on Earth.
The NATO Advanced Research Workshop on "White Dwarfs", held in June 2002 at the Astronomical Observatory of Capodimonte in Naples, Italy, continues the long tradition of the European Work- shop series on "White Dwarfs", which started in Kiel in 1974 by Prof. Volker Weidemann. Since then, similar workshops were organized al- most every two years: Frascati (1976), Tel Aviv (1978), Paris (1981), Kiel (1984), Frascati (1986), Toulouse (1990), Leicester (1992), Kiel (1994), Blanes (1996), Troms0 (1998) and Newark-Delaware (2000). The proceedings of these meetings, together with those from the IAU Colloquia in Rochester (NY, 1979) and Hanover (New Hampshire, 1988), represent a unique record of how the research field of white dwarfs has developed in more a quarter of a century. We hope that the present volume, which contains a large number ofcontributions on different topics, will provide an updated and broadened view of this very active field of research. th The format of this workshop, which is the 13 of the series, keeps that ofprevious meetings: givingthe same amount oftime to all speak- ers, no parallel sessions and no limitations on the number of posters.
The Symposium .Symmetries in Science VI: From the Rotation Group to Quantum Algebras. was held at the Cloister Mehrerau, Bregenz, Austria, during the period August 2-7, 1992. The Symposium was held in honor of Professor Lawrence C. Biedenharn on the occasion of his 70th birthday. During the academic year 1966/67 I worked as research associate with Larry at Duke University and we have ever since maintained close contact. It was thus natural for me to take the initiative and to organize this Symposium in honor of Larry as a great scientist and friend. The response which the Symposium received showed the favorable reaction by the scientific community to the opportunity provided by the Symposium to honor our colleague, teacher and friend. Equally, the scientific contributions contained in this volume illustrate the high esteem in which he is held. I wish to thank all the scientists who participated in the Symposium and who contributed to this volume. It is due to their commitment that the Symposium was successful. Finally I need to thank those who provided financial and logistical assistance to the Symposium: Dr. John H. Guyon, President of Southern Illinois University at Carbondale, Dr. Russell R. Dutcher, Dean, College of Science at SIUC, Dr. Maurice A. Wright, Chairman, Department of Physics, SIUC, Dr. Victoria J. Molfese, Office of Research Developement and Administration, SIUC, as well as Dr. Martin Purtscher, Landeshauptmann, Land Vorarlberg Dr. Guntram Lins, Landesrat, Land Vorarlberg."
Chaos theory plays an important role in modern physics and related sciences, but -, the most important results so far have been obtained in the study of gravitational systems applied to celestial mechanics. The present set of lectures introduces the mathematical methods used in the theory of singularities in gravitational systems, reviews modeling techniques for the simulation of close encounters and presents the state of the art about the study of diffusion of comets, wandering asteroids, meteors and planetary ring particles. The book will be of use to researchers and graduate students alike.
Numerical relativity has emerged as the key tool to model gravitational waves - recently detected for the first time - that are emitted when black holes or neutron stars collide. This book provides a pedagogical, accessible, and concise introduction to the subject. Relying heavily on analogies with Newtonian gravity, scalar fields and electromagnetic fields, it introduces key concepts of numerical relativity in a context familiar to readers without prior expertise in general relativity. Readers can explore these concepts by working through numerous exercises, and can see them 'in action' by experimenting with the accompanying Python sample codes, and so develop familiarity with many techniques commonly employed by publicly available numerical relativity codes. This is an attractive, student-friendly resource for short courses on numerical relativity, as well as providing supplementary reading for courses on general relativity and computational physics.
A few years ago, a real break-through happened in observational astronomy: the un derstanding of the effect of atmospheric turbulence on the structure of stellar images, and of ways to overcome this dramatic degradation. This opened a route to diffraction-limited observations with large telescopes in the optical domain. Soon, the first applications of this new technique led to some outstanding astrophysical results, both at visible and infrared wavelengths. Yet, the potential of interferometric observations is not fully foreseeable as the first long-baseline arrays of large optical telescopes are being built or cOIIllnissioned right now. In this respect a comparison with the evolution of radio-astronomy is tempting. From a situation where, in spite of the construction of giant antennas, low angular resolution was prevailing, the introduction of long baseline and very long baseline interferometry and the rapid mastering of sophisticated image reconstruction techniques, have brought on a nearly routine basis high dynamic range images with milliarcseconds resolution. This, of course, has completely changed our views of the radio sky."
Much of what is known about the universe came from the study of celestial shadows. This book looks in detail at the way eclipses and other celestial shadows have given us amazing insights into the nature of the objects in our solar system and how they are even helping us discover and analyze planets that orbit stars other than our Sun. A variety of eclipses, transits, and occultations of the mooons of Jupiter and Saturn, Pluto and its satellite Charon, asteroids and stars have helped astronomers to work out their dimensions, structures, and shapes - even the existence of atmospheres and structures of exoplanets. Long before Columbus set out to reach the Far East by sailing West, the curved shadow of the Earth on the Moon during a lunar eclipse revealed that we inhabit a round world, a globe. More recently, comparisons of the sunlit and Earthlit parts of the Moon have been used to determine changes in the Earth's brightness as a way of monitoring possible effects in cloud coverage which may be related to global warming. Shadows were used by the Greek mathematician Eratosthenes to work out the first estimate of the circumference of the Earth, by Galileo to measure the heights of the lunar mountains and by eighteenth century astronomers to determine the scale of the Solar System itself. Some of the rarest and most wonderful shadows of all are those cast onto Earth by the lovely "Evening Star" Venus as it goes between the Earth and the Sun. These majestic transits of Venus occur at most two in a century; after the 2012 transit, there is not a chance to observe this phenomenon until 2117, while the more common sweep of a total solar eclipse creates one of the most dramatic and awe-inspiring events of nature. Though it may have once been a source of consternation or dread, solar eclipses now lead thousands of amateur astronomers and "eclipse-chasers" to travel the globe in order to experience the dramatic view under "totality." These phenomena are among the most spectacular available to observers and are given their full due in Westfall and Sheehan's comprehensive study.
In the nineteenth century the beauty of the night sky is the source of both imaginative wonder in poetry and political and commercial power through navigation. The Romantic Imagination and Astronomy examines the impact of astronomical discovery and imperial exploration on poets including Barbauld, Coleridge, Keats, Shelley, and Rossetti.
For decades experiments conducted on space stations like MIR and the ISS have been gathering data in many fields of research in the natural sciences, medicine and engineering. The EU-sponsored Ulisse Internet Portal provides metadata from space experiments of all kinds and links to the data. Complementary to the portal, this book will serve as handbook listing space experiments by type of infrastructure, area of research in the life and physical sciences, data type, what their mission was, what kind of data they have collected and how one can access this data through Ulisse for further research. The book will provide an overview of the wealth of space experiment data that can be used for research, and will inspire academics (e.g. those looking for topics for their PhD thesis) and research departments in companies for their continued development.
On May 18-21, 2004, the Max-Planck-Society's Harnack-Haus in Dahlem, Berlin hosted the international symposium "Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century." The symposium was dedicated to exploring the complementarity and synergies between different branches of astrophysical research, by presenting and discussing the fundamental scientific problems that will be addressed in the next few decades.
1. The Workshop and this Tome In the excellent bucolic setting of SchloB Ringberg in Upper Bavaria, over 50 scientists assembled during the week of 23-28 September 1996 to discuss recent results, both theoretical and observational in nature, on the large scale structure of the Universe. Such a topic is perhaps nowadays far too encompassing, and is essentially all of what we used to call "observational cosmology. " The original philosophy of the organization of this meeting was deliber ated aimed at the younger community and their contributions. As a conse quence, the content of the presentations was refreshingly new, as it should be. In spite of the deficiences caused by the lack of certain key researchers in this field, for one reason or another, the final result was rewarding to all. Although the conference was held in Fall 1996, the contributions contained herein were submitted as late as Spring 1998, thus the content maintains some degree of trendiness. Originally the current volume was to be a "proceedings. " This refers to the usual archival tome that fills one's shelf and is rarely consulted, except to see the canonical group photo, which by the way, we also have. Nevertheless, I wanted something more than that. Although the field is rapidly changing, with so-called facts in a state ofconstant volubility, now is a good time for reflection prior to the commencement ofthe Sloan Survey, presumably the definitive large-scale program of low- to moderate-redshift galaxies in our lifetime."
The 19th ESLAB Symposium on 'The Sun and the Heliosphere in Three Dimensions' was held in Les Diablerets (Switzerland) on 4-6 June 1985. Organised almost exactly ten years after the Goddard Space Fl i ght Center Sympos i um dea 1 i ng with the Sun and the i nterp 1 anetary medium in three dimensions, the aim of this Symposium was not only to review the progress made in understanding the three-dimensional structure and dynamics of the heliosphere, but also to look ahead to the scientific return to be expected from the Ulysses mission. Scheduled for launch in May 1986, the scientific instrumentation on board Ulysses will shed light on the conditions and processes occurring away from the ecliptic plane, thereby adding literally a new dimension to our understanding of the only stellar plasmasphere to which we have direct access. The scientific programme of the Symposium was built around a series of invited review papers dealing with aspects of the corona and its influence on the interplanetary medium via transient ejecta, the solar wind, energetic solar particles and galactic cosmic rays, interplanetary dust and neutral gas. These invited talks were supplemented by a number of contributed and poster papers. With the exception of three contributed talks and Wibberenz' review of coronal and acceleration of energetic particles, all papers propagation presented at the Symposium are included in this volume.
This IAU Symposium brought together researchers who use CCDs and arrays, designers and manufacturers of CCDs and array mosaics, and those who write the software to control these devices and to reduce the large amounts of data contained in each frame. At the meeting such topics as plans for applying the new technology to the new large telescopes that have been built recently and those planned in the near future, new developments in infra-red arrays, advances and concerns with the use of CCDs in photometry and spectroscopy and the creation of large mosaics in photometry and spectroscopy, and the creation of large mosaics of chips which allow larger areas of the sky to be covered in a single frame were discussed. There were sessions devoted to the following topics: new developments in CCD technology; new developments in IR detector arrays; direct imaging with CCDs and other arrays; spectroscopy with CCDs and other arrays; and large field imaging with array mosaics. Scientific results of studies made with this technology were covered in the poster sessions. CCD and array detectors have become the detectors of choice at all the world's optical observatories. Such instruments on small university and college telescopes have turned these telescopes into instruments that can now do observations which in the past were done only on the largest telescopes. CCDs and arrays are known as "the people's detector" because of their ability to turn small telescopes into true research instruments. On large telescopes observations can be made of extremely faint and crowded objects that were impossible to observe before the advent of CCD and Array technology. The proceedings of this meeting should be useful to all those who are interested in the design, manufacture and use of CCDs and arrays for astronomical observations.
New interferometers as the VLTI, the Keck-I and CHARA along with their sophisticated instrumentation have provided new levels of accuracy, spectral resolution and access to various spectral bands from the optical to the thermal infrared. Investigations are now enabled on a wealth of astrophysical sources with unprecedented levels of angular resolution and sensitivity, producing a considerable body of new, exciting scientific results. Celebrating the completion of the first phase of the VLTI development, the organisors of the ESO workshop "The Power of Optical/IR Interferometry," held in April 2005, saw an opportunity to invite the community to come together to review and discuss not just interferometers, but science with interferometers and its impact on astronomy as a whole. The workshop was also intended to showcase ideas and concepts for the future of interferometry, and in particular for the second generation of VLTI instrumentation. This volume contains the proceedings of this workshop and serves as reference for astronomers working with optical and infrared interferometry.
Some 25 years after the birth of inflationary cosmology, this volume sets out to provide both an authoritative and pedagogical introduction and review of the current state of the field. Readers learn about the arguments supporting the many different scenarios of cosmic inflation. Articles are written by eminent scientists, many of whom have made pioneering contributions to the field of inflationary cosmology.
The papers in this volume aim to represent the most up-to-date research contributions on the observations, theoretical interpretations, and empirical and physical models of variations observed in solar and stellar irradiances, as well as on Sun-climate connections. Both theoretical studies and irradiance observations show that the energy output of the Sun and solar-type stars varies, changing on time scales related to the short-term surface manifestations of solar/stellar magnetic activity as well as long-term modulations driven by processes in the interiors of the stars. Papers presented in this book point out that at the Earth these variations influence the terrestrial climate, radiative environment and upper atmospheric chemistry. |
![]() ![]() You may like...
The How Not To Die Cookbook - Over 100…
Michael Greger
Paperback
![]()
Outer Magnetospheric Boundaries: Cluster…
Goetz Paschmann, Steven Schwartz, …
Hardcover
R4,438
Discovery Miles 44 380
A Brief History Of Black Holes - And Why…
Dr. Becky Smethurst
Paperback
Little Bird Of Auschwitz - How My Mother…
Alina Peretti, Jacques Peretti
Paperback
|