![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Astronomy, space & time
This thesis explores the idea that the Higgs boson of the Standard
Model and the cosmological inflation are just two manifestations of
one and the same scalar field - the Higgs-inflation. By this
unification two energy scales that are separated by many orders of
magnitude are connected, thereby building a bridge between particle
physics and cosmology. An essential ingredient for making this
model consistent with observational data is a strong non-minimal
coupling to gravity. Predictions for the value of the Higgs mass as
well as for cosmological parameters are derived, and can be tested
by future experiments. The results become especially exciting in
the light of the recently announced discovery of the Higgs boson.
The non-technical, basic yet familiar features of time are investigated, e.g. two novel, detailed arguments defending the common view that 'time rolls relentlessly' are advanced; a number of hitherto neglected fundamental differences between spatio-temporal location and every other physical property are discussed; the unresolved problem, why the past is so much better known than the future is tackled. For those who wish to delve deeper, 25% of the book consists of problems to ponder and their possible solutions.
This volume contains the proceedings from the conference "The Labyrinth of Star Formation" that was held in Crete, Greece, in June 2012, to honour the contributions to the study of star formation made by Professor Anthony Whitworth of Cardiff University. The book covers many aspects of theoretical and observational star formation: low-mass star formation; young circumstellar discs; computational methods; triggered star formation; the stellar initial mass function; high-mass star formation and stellar clusters. Each section starts with a review paper, followed by papers discussing recent theoretical and observational work. This volume summarises our current understanding of star formation and is useful for both graduate students and researchers alike.
White dwarfs, neutron stars, and (solar mass) black holes are the collapsed cores of stars which, near the ends of their luminous lives, have shed most of their mass in supernova explosions or other, less spectacular, instabilities. Here gravity crushes matter to realms that lie far beyond present empirical knowledge. This book explores the diverse forms that such compact stars can possibly take, as constrained by the laws of nature: the general principles of relativity and quantum mechanics, the properties of nuclear matter deduced from nuclei, and the asymptotic freedom of quarks at high density. The book is self contained. It reviews general relativity, essential aspects of nuclear and particle physics, and general features of white dwarfs, neutron stars and black holes; it includes background on such matters as stellar formation and evolution, the discovery of pulsars and associated phenomena, and the strange-matter hypothesis. The book develops a theory for the constitution of neutron stars and the more exotic Hyperon Stars, Hybrid Stars (containing a quark matter core surrounded by an intricate lattice of quark and hadronic matter) and Strange Stars and Dwarfs (composed of the three light quark flavors sheathed in a solid skin of heavy ions). This second edition has been revised throughout to clarify discussions and bring data up to date; it includes new figures, several new sections, and new chapters on Bose condensates in neutron stars and on phase transitions.
Gamma-ray astronomy began in the mid-1960s with balloon satellite, and, at very high photon energies, also with ground-based instruments. However, the most significant progress was made in the last decade of the 20th century, when the tree satellite missions SIGMA, Compton, and Beppo-Sax gave a completely new picture of our Universe and made gamma-ray astronomy an integral part of astronomical research. This book, written by well-known experts, gives the first comprehensive presentation of this field of research, addressing both graduate students and researchers. Gamma-ray astronomy helps us to understand the most energetic processes and the most violent events in the Universe. After describing cosmic gamma-ray production and absorption, the instrumentation used in gamma-ray astronomy is explained. The main part of the book deals with astronomical results, including the somewhat surprising result that the gamma-ray sky is continuously changing.
This volume contains the Proceedings of the Fourth Scientific Meeting of the Spanish Astronomical Society (Sociedad Espanola de Astronomfa, SEA). The meeting was held at the Universidade de Santiago de Compostela in Galicia from September 11 to 14, 2000. The event brought together 156 participants who pre- sented their latest results in many different subjects. In comparison with the previous scientific meetings of the Society, the numbers of oral talks and poster contributions (95 and 51, respectively) are rapidly increasing, confirming that the SEA conferences are becoming a point of reference to assess the interests and achievements of astrophysical research in Spain. During the meeting, the SEA made public the granting of the Prize to the Best Spanish Ph. D. Thesis in As- tronomy and Astrophysics for the period 1998-1999 to Dr. H. Socas. This is the first time that the SEA is awarding this prize, which aim is to encourage young spanish astrophysicists to pursue a high level scientific career. The Society is indebted to the Universidade de Santiago de Compostela, and, in particular, to the Observatorio Astronomico Ramon Marfa Aller, for its hospi- tality. The Local Organizing Committee took care of all the logistics details to ensure a nice stay for all the participants. The effort of the Scientific Organizing Committee was decisive in determining the organizational and scientific success of the meeting.
Les deuxiernes "Rencontres de l'Observatoire", qui ont eu lieu a l'Observatoire de Paris a Meudon du 10 au 14 Janvier 2000, ont reuni autour du theme "Problernes ernergents en physique de I'espace" 120 physiciens et astrophysiciens venus d'une vingtaine de pays differents. Nous avons voulu honorer a cette occasion Jean-Louis Steinberg pour ses con- tributions majeures a la recherche spatiale, ala radioastronomie et a la physique de I'espace. L'approche explicitement pluridisciplinaire de ce colloque, qui ne s'est pas laisse confiner dans les limites etroites de la physique spatiale ni dans celles imposees par certains programmes officiels, suit l'esprit de sa carriere scientifique: sortir des limites des sujets deja etudies ou sur Ie point de l'etre, et appliquer les connaissances acquises pour explorer de nouveaux domaines. Ce dernier quart de siecle a vu une croissance vertigineuse des performances spatiales. La technologie moderne ne perrnet pas encore de jongler avec les univers comme Ie prestidigitateur de Grandville (Grandville, Un autre monde, ed. H. Four- nier, Paris, 1844); mais quelques decades ont suffi pour voir des instruments soph- istiques explorer les frontieres du systerne solaire, et la cornmunaute de la recher- che spatiale a depasse rapidement Ie sujet etroit de I'environnement soleil-terre pour s'interesser a I'ensemble de l'heliosphere, OU les memes processus physiques sont a I'ceuvre.
This text records the recent events in the development of astrometry. The results of space missions in astrometry, Hipparcos and some results from the Hubble Space telescope are presented. Combined with ground-based results, this provides astrometry results at milliarcsecond resolution. At the same time, the extragalactic reference frame, based on very long baseline interferometry radio positions, is being introduced as the fundamental reference frame. It is now also evident that future optical interferometry space missions can provide an additional improvement in future of orders of magnitude. In addition to presenting the results, the text also discusses different applications based on such accurate astrometric positions.
Starting from Mars outward this concise handbook provides thorough information on the satellites of the planets in the solar system. Each chapter begins with a section on the discovery and the naming of the planet s satellites or rings. This is followed by a section presenting the historic sources of those names. The book contains tables with the orbital and physical parameters of all satellites and is illustrated throughout with modern photos of the planets and their moons as well as historical and mythological drawings. The Cyrillic transcriptions of the satellite names are provided in a register. Readers interested in the history of astronomy and its mythological backgrounds will enjoy this beautiful volume. "
China's most sophisticated system of computational astronomy was created for a Mongol emperor who could neither read nor write Chinese, to celebrate victory over China after forty years of devastating war. This book explains how and why, and reconstructs the observatory and the science that made it possible. For two thousand years, a fundamental ritual of government was the emperor's "granting the seasons" to his people at the New Year by issuing an almanac containing an accurate lunisolar calendar. The high point of this tradition was the "Season-granting system" (Shou-shih li, 1280). Its treatise records detailed instructions for computing eclipses of the sun and moon and motions of the planets, based on a rich archive of observations, some ancient and some new. Sivin, the West's leading scholar of the Chinese sciences, not only recreates the project's cultural, political, bureaucratic, and personal dimensions, but translates the extensive treatise and explains every procedure in minimally technical language. The book contains many tables, illustrations, and aids to reference. It is clearly written for anyone who wants to understand the fundamental role of science in Chinese history. There is no comparable study of state science in any other early civilization.
Black hole gravitohydromagnetics (GHM) is developed from the rudiments to the frontiers of research in this book. GHM describes plasma interactions that combine the effects of gravity and a strong magnetic field, in the vicinity (ergosphere) of a rapidly rotating black hole. This topic was created in response to the astrophysical quest to understand the central engines of radio loud extragalactic radio sources. The theory describes a "torsional tug of war" between rotating ergospheric plasma and the distant asymptotic plasma that extracts the rotational inertia of the black hole. The recoil from the struggle between electromagnetic and gravitational forces near the event horizon is manifested as a powerful pair of magnetized particle beams (jets) that are ejected at nearly the speed of light. This second edition of the book is updated throughout and contains a completely new chapter discussing state of the art and results of numerical simulations of ergospheric disk jets occurring in magnetohydrodynamic accretion flows.
Papers of the Paris meeting in June 1990 on Local Group Galaxies, molecules in early-type galaxies, observations of spiral structure in molecular clouds, a comparison with other gaseous components and IR emission, interacting galaxies and starbursts, gas and star dynamics, galaxy evolution, IRAS ult
The SECCHI A and B instrument suites (Howard et al. , 2006) onboard the two STEREO mission spacecraft (Kaiser, 2005) are each composed of: one Extreme Ultra-Violet Imager (EUVI), two white-light coronagraphs (COR1 and COR2), and two wide-angle heliospheric imagers (HI1 and HI2). Technical descriptions of EUVI, COR1 and the HIs can be found in Wuelser et al. (2004), Thompson et al. (2003), and De?se et al. (2003), respectively. The images produced by SECCHI represent a data visualization challenge: i) the images are 2048x2048 pixels (except for the HIs, which are usually binned onboard 2x2), thus the vast majority of computer displays are not able to display them at full frame and full r- olution, and ii) more importantly, the ?ve instruments of SECCHI A and B were designed to be able to track Coronal Mass Ejections from their onset (with EUVI) to their pro- gation in the heliosphere (with the HIs), which implies that a set of SECCHI images that covers the propagation of a CME from its initiation site to the Earth is composed of im- ?1 ages with very different spatial resolutions - from 1. 7 arcsecondspixel for EUVI to 2. 15 ?1 arcminutespixel for HI2, i. e. 75 times larger. A similar situation exists with the angular scales of the physical objects, since the size of a CME varies by orders of magnitude as it expands in the heliosphere.
This book-unique in the literature-provides readers with the mathematical background needed to design many of the optical combinations that are used in astronomical telescopes and cameras. The results presented in the work were obtained by using a different approach to third-order aberration theory as well as the extensive use of the software package Mathematica (R). Replete with workout examples and exercises, Geometric Optics is an excellent reference for advanced graduate students, researchers, and practitioners in applied mathematics, engineering, astronomy, and astronomical optics. The work may be used as a supplementary textbook for graduate-level courses in astronomical optics, optical design, optical engineering, programming with Mathematica, or geometric optics.
Captures advances being made in the field of coronal magnetism, from theory to observations and instrumentation. This volume is a collection of research articles on the subject of the solar corona, and particularly, coronal magnetism. The book was motivated by the Workshop on Coronal Magnetism: Connecting Models to Data and the Corona to the Earth, which was held 21 - 23 May 2012 in Boulder, Colorado, USA. This workshop was attended by approximately 60 researchers. Articles from this meeting are contained in this topical issue, but the topical issue also contains contributions from researchers not present at the workshop. This volume is aimed at researchers and graduate students active in solar physics. Originally published in Solar Physics, Vol. 288, Issue 2, 2013 and Vol. 289, Issue 8, 2014.
This unique volume contains the proceedings of two "Non-Sleeping Universe" conferences: "Stars and the ISM" and "From Galaxies to the Horizon." The book provides an overview of recent developments in a variety of areas, covering a very wide range of spatial and temporal scales.
There are as many different kinds of stars as there are stars themselves. Each an individual, every one unique. In this arresting and lavishly illustrated volume, noted astronomy writer and teacher Jim Kaler choose 100 stars to illustrate the mind-boggling variety of the stars' shapes and sizes, their immense ages, and the vast range of configurations in which they exist.||From AG Draconis to Z Andromedae, this alphabetically arranged volume first lists each star's resident constellation, its class, its apparent brightness as viewed from Earth, its distance from our Sun, and its visual luminosity. Then the real story begins. In choosing his "top 100," Kaler has aimed not just at providing a representative sample of the Universe's extraordinarily diverse population, but at capturing their complexity, their dynamism, and the amazing view they provide into the extraordinary physical forces at play in the Universe.||James B. Kaler is Professor of Astronomy at the University of Illinois at Urbana-Champaign. He has held both Fulbright and Guggenheim Fellowships, and has been awarded medals for his work from the University of Liege (Belgium) and the University of Mexico. He is the author of six books and dozens of articles on astronomy, including The Little Book of Stars (Copernicus Books, 2000) and lectures frequently. He also directs and maintains several educational websites, including the highly regarded and award-winning "Stars of the Week" site at the University of Illinois: http://www.astro.uiuc.edu/~kaler/sow/sow.html.||Reviews:||¿Most people know about Sirius, Canopus and Antares, but not everyone will be familiar with EG 129, HZ 21 and Polaris Australis, the dim star close to the south pole of the sky. Enter The Hundred Greatest Stars by James Kaler...Following a very clear general introduction to stellar astronomy, Kaler embarks on an informative tour through his hundred favourite stars, each given a page of text with an appropriate illustration on the facing page¿The really clever aspect of the book is that as well as describing the hundred stars, often bringing out aspects which are unfamiliar, Kaler succeeds in giving an excellent broad survey of recent developments in stellar astronomy. As is to be expected, the text is immensely authoritative¿The illustrations are beautiful...¿|¿New Scientist
The study of the Solar system, particularly of its newly discovered outer parts, is one of the hottest topics in modern astrophysics with great potential for revealing fundamental clues about the origin of planets and even the emergence of life. The three lecturers of the 35th Saas-Fee Advanced Course, which have been updated and collected in this volume, cover the field from observational, theoretical and numerical perspectives.
Constituting the first holistic overview including practical remedies, this handbook provides the background needed by anyone grappling with the complex issue of outdoor lighting and its effects. It describes not only the problems that astronomers and other night sky observers face in reducing the problems of information loss due to light pollution, as well as the problems lighting technologists face in optimising outdoor lighting installations that cause little or no light pollution. The first part is directed to decision makers and managers of outdoor space and covers the areas of general interest, culminating in recommendations to reduce the impact of light pollution. The second part is directed primarily to scientists and engineers, as a support to the design and maintenance of outdoor lighting installations, with special reference to astronomical observations. Elaborating issues from the first part, these contributions include examples that refer to specific outdoor lighting projects and to more general policy and educational measures. Written for designers of lighting equipment and managers of astronomical observatories, but also aimed at the authorities and decision makers responsible for the organization and maintenance of the public space, it will serve a good purpose in graduate or postgraduate curricula for scientists, engineers, economists and law students. This handbook fills the gap that exists between astronomical textbooks, engineering texts and popular brochures about light pollution.
This book is the second volume under the title Organizations and Strategies in Astronomy (OSA). These OSA books are intended to cover a large range of fields and themes: in practice, one could say that all aspects of astronomy-related life and environment are considered in the spirit of sharing specific expertise and lessons learned. This book offers a unique collection of chapters dealing with socio-dynamical aspects of the astronomy (and related space sciences) community: characteristics of organizations, operational techniques, strategies for development, conference series, coordination policies, observing practicalities, computing strategies, sociology of large collaborations, publications studies, research indicators, research communication, public outreach, creativity in arts and sciences, and so on. The experts contributing to this book have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy while providing specific detailed information and sometimes enlightening 'lessons learned' sections. The book concludes with an updated bibliography of publications related to socio-astronomy and to the interactions of the astronomy community with the society at large. This book will be most usefully read by researchers, teachers, editors, publishers, librarians, sociologists of science, research planners and strategists, project managers, public-relations officers, plus those in charge of astronomy-related organizations, as well as by students aiming at a career in astronomy or related space science.
IAU Symposium 172 Dynamics, Ephemerides and Astrometry of the Solar System was held in Paris in July, 1995. 250 scientists from 33 countries attended the symposium; 24 invited lectures and 165 contributed papers were presented (117 of which were posters). The papers covered topics on celestial mechanics (chaos and evolution of the solar system, asteroids, theories of the motion of the planets, the moon and the natural satellites), methods (symplectic mappings and elliptic functions), astrometry (CCD observations, VLBI and radar observations), ephemerides (representation and numerical integration) and on the history of celestial mechanics.
The information received from BeppoSAX, Chandra and other instruments in the last two years has more than doubled the number of samples of Gamma-Ray Bursts localized and followed up for afterglow search. This has also increased the interest of astronomers in GRBs. This book reviews the research of the last two years and covers the global properties of GRBs, GRB afterglows, GRB host galaxies, cosmology using GRBs, and theories for GRBs and their afterglows. Theoretical and observational aspects are presented as well as tools for the analysis of the data.
This volume covers different aspects of recent theoretical and
observational work on magnetic reconnection, a fundamental
plasma-physical process by which energy stored in magnetic field is
converted, often explosively, into heat and kinetic energy. This
collection of papers from the fields of solar and space physics,
astrophysics, and laboratory plasma physics is especially timely in
view of NASA's upcoming Magnetospheric Multiscale mission, which
will use Earth's magetosphere as a laboratory to test, through
in-situ measurement of the plasma, energetic particles, and
electric and magnetic fields, the various and sometimes competing
models and theories of magnetic reconnection. |
![]() ![]() You may like...
The Dynamics of Small Bodies in the…
B. A. Steves, Archie E. Roy
Hardcover
R5,948
Discovery Miles 59 480
Solar and Extra-Solar Planetary Systems…
I.P. Williams, N. Thomas
Hardcover
R2,910
Discovery Miles 29 100
Medications & Mothers' Milk 2017
Thomas W. Hale, Hilary E. Rowe
Paperback
|