![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Astronomy, space & time
Meteorites are natural objects that have fallen from space to the Earth's surface. Once considered bad omens, they are now recognised as a unique window onto the processes that forged the formation of the solar system 4,570 million years ago. They reveal how impacts have shaped and modified planets, asteroids and moons; and they even contain evidence of astrophysical phenomena that occurred long before our solar system was born. In Meteorites, leading experts from the Natural History Museum, London provide a compelling and cutting edge introduction to the evolving science of meteoritics. They reveal what meteorites are, where they are most likely to be found, and the type of celestial bodies that they hail from. The book contains all the latest information on key meteorite falls and considers some of the big questions that still remain - such as whether our solar system is unusual in creating a planet that supports life, and if it is likely we will find complex life elsewhere. With a mix of photographs, diagrams and maps, Meteorites is essential reading for all those with an interest in the nature of our solar system.
The Sun is nowadays observed using di?erent techniques that provide an almost instantaneous 3-D map of its structure. Of particular interest is the studyofthevariabilityinthesolaroutputproducedbythedissipationofm- netic energy on di?erent spatial and temporal scales - the so-called magnetic activity. The 11-year cycle is the main feature describing this phenomenon. Apart from its intrinsic scienti?c interest, this topic is worth studying because of the interaction of such processes with the terrestrial environment. A ?eet of space and ground-based observatories are currently monitoring the behaviour of our star on a daily basis. However, solar activity varies not only on this decadal time-scale, as has been attested mainly through two methods: (a) records of the number of sunspots observed on the solar surface from 1610, and (b) the records of 14 10 cosmogenic isotopes, such as Cand Be, measured in tree-rings and i- cores, respectively. The study of the long-term behaviour of solar activity may be comp- mented by the study of historical accounts describing phenomena directly or indirectly related to solar activity. Numerous scienti?c and non-scienti?c d- uments have reported these events and we can make use of them as a proxy of solar activity in past times.
Why should there be anything at all? Why, in particular, should a material world exist? Bede Rundle advances clear, non-technical answers to these perplexing questions. If, as the theist maintains, God is a being who cannot but exist, his existence explains why there is something rather than nothing. However, this can also be explained on the basis of a weaker claim. Not that there is some particular being that has to be, but simply that there has to be something or other. Rundle proffers arguments for thinking that that is indeed how the question is to be put to rest. Traditionally, the existence of the physical universe is held to depend on God, but the theist faces a major difficulty in making clear how a being outside space and time, as God is customarily conceived to be, could stand in an intelligible relation to the world, whether as its creator or as the author of events within it. Rundle argues that a creator of physical reality is not required, since there is no alternative to its existence. There has to be something, and a physical universe is the only real possibility. He supports this claim by eliminating rival contenders; he dismisses the supernatural, and argues that, while other forms of being, notably the abstract and the mental, are not reducible to the physical, they presuppose its existence. The question whether ultimate explanations can ever be given is forever in the background, and the book concludes with an investigation of this issue and of the possibility that the universe could have existed for an infinite time. Other topics discussed include causality, space, verifiability, essence, existence, necessity, spirit, fine tuning, and laws of Nature. Why There Is Something Rather Than Nothing offers an explanation of fundamental facts of existence in purely philosophical terms, without appeal either to theology or cosmology. It will provoke and intrigue anyone who wonders about these questions.
This book aims at giving the basis of primordial cosmology. The book is self-contained in the sense that all the elements for the derivations of the presented results are given. It can be used as a textbook to study cosmology. It is divided into 3 parts. Part 1 summarizes the fundamentals in theoretical physics needed in cosmology (general relativity, field theory, particle physics). Part 2 describes the standard model of cosmology and includes cosmological solutions of Einstein equations, hot big bang model, cosmological perturbation theory, cosmic microwave background anisotropies, lensing and evidences for dark matter, and inflation. Part 3 describes extensions of this model and opens up to today's research in the field: scalar-tensor theories, supersymetry, the cosmological constant problem and acceleration of the universe, topology of the universe, grand unification and baryogenesis, topological defects and phase transitions, string inspired cosmology including branes and latest developments. The book provides details of all derivations and leads the student up to the level of research articles.
This edited volume charts the history of celestial navigation over the course of five centuries. Written by a group of historians and scientists, it analyzes how competing navigation systems, technologies, and institutions emerged and developed, with a focus on the major players in the US and the UK. The history covers the founding of the Royal Observatory; the first printing of a Nautical Almanac; the founding of the US and UK Nautical Almanac Offices; the creation of international standards for reference systems and astronomical constants; and the impact of 20th century technology on the field, among other topics. Additionally, the volume analyzes the present role and status of celestial navigation, particularly with respect to modern radio and satellite navigation systems. With its diverse authorship and nontechnical language, this book will appeal to any reader interested in the history of science, technology, astronomy, and navigation over the ages.
The Workshop "Science with the VLT in the ELT Era" held in Garching from 8th to 12th October 2007 was organised by ESO, with support from its Scienti c and Technical Committee, to provide a forum for the astronomical community to debate the long term future of ESO's Very Large Telescope (VLT) and its interferometric mode (VLTI). In particular it was considered useful for future planning to evaluate how its science use may evolve over the next decade due to competition and/or synergy with new facilities such as ALMA, JWST and, hopefully, at least one next generation 30-40 m extremely large telescope whose acronym appears in the title to symbolise this wider context. These discussions were also held in the fresh light of the Science Vision recently developed within ASTRONET as the rst step towards a 20 year plan for implementing astronomical facilities-the rst such attempt within Europe. Speci c ideas and proposals for new, second generation VLT/I instruments were also solicited following a tradition set by several earlier Workshops held since the start of the VLT development. The programme consisted of invited talks and reviews and contributed talks and posters. Almost all those given are included here although, unfortunately not the several lively but constructive discussion sessions.
This book provides an introduction to the physics of interstellar gas in the Galaxy. It deals with the diffuse interstellar medium which supplies a complex environment for exploring the neutral gas content of a galaxy like the Milky Way and the techniques necessary for studying this non-stellar component. After an initial exposition of the phases of the interstellar medium and the role of gas in a spiral galaxy, the authors discuss the transition from atomic to molecular gas. They then consider basic radiative transfer and molecular spectroscopy with particular emphasis on the molecules useful for studying low-density molecular gas. Observational techniques for investigating the gas and the dust component of the diffuse interstellar medium throughout the electromagnetic spectrum are explored emphasizing results from the recent Herschel and Planck missions. A brief exposition on dust in the diffuse interstellar medium is followed by a discussion of molecular clouds in general and high-latitude molecular clouds in particular. Ways of calibrating CO observations with the molecular hydrogen content of a cloud are examined along with the dark molecular gas controversy. High-latitude molecular clouds are considered in detail as vehicles for applying the techniques developed in the book. Given the transient nature of diffuse and translucent molecular clouds, the role of turbulence in the origin and dynamics of these objects is examined in some detail. The book is targeted at graduate students or postdocs who are entering the field of interstellar medium studies.
In The Earth as a Distant Planet, the authors become external observers of our solar system from a distance and try to determine how one can understand how Earth, the third in distance to the central star, is essentially unique and capable of sustaining life. The knowledge gained from this original perspective is then applied to the search for other planets outside the solar system, or exoplanets. Since the discovery in 1992 of the first exoplanet, the number of planet detections has increased exponentially and ambitious missions are already being planned for the future. The exploration of Earth and the rest of the rocky planets are Rosetta stones in classifying and understanding the multiplicity of planetary systems that exist in our galaxy. In time, statistics on the formation and evolution of exoplanets will be available and will provide vital information for solving some of the unanswered questions about the formation, as well as evolution of our own world and solar system. Special attention is paid to the biosignatures (signs of life) detectable in the Earth's reflected spectra and the search for life in the universe. The authors are experts on the subject of extrasolar planets. They provide an introductory but also very much up-to-date text, making this book suitable for researchers and for advanced students in astronomy and astrophysics.
The book analyses a broad range of relevant aspects as the outer space and cyber space domain do not only present analogies but are also strongly interrelated. This may occur on various levels by technologies but also in regard to juridical approaches, each nevertheless keeping its particularities. Since modern societies rely increasingly on space applications that depend on cyber space, it is important to investigate how cyberspace and outer space are connected by their common challenges. Furthermore, this book discusses not only questions around their jurisdictions, but also whether the private space industry can escape jurisdiction by dematerializing the space resource commercial processes and assets thanks to cyber technology. In addition, space and cyberspace policies are analysed especially in view of cyber threats to space communications. Even the question of an extra-terrestrial citizenship in outer space and cyberspace may raise new views. Finally, the interdependence between space and cyberspace also has an important role to play in the context of increasing militarization and emerging weaponization of outer space. Therefore, this book invites questioning the similarities and interrelations between Outer Space and Cyber Space in the same way as it intends to strengthen them.
In this book, the author leads the reader, step by step and without any advanced mathematics, to a clear understanding of the foundations of modern elementary particle physics and cosmology. He also addresses current and controversial questions on topics such as string theory. The book contains gentle introductions to the theories of special and general relativity, and also classical and quantum field theory. The essential aspects of these concepts are understood with the help of simple calculations; for example, the force of gravity as a consequence of the curvature of the space-time. Also treated are the Big Bang, dark matter and dark energy, as well as the presently known interactions of elementary particles: electrodynamics, the strong and the weak interactions including the Higgs boson. Finally, the book sketches as yet speculative theories: Grand Unification theories, supersymmetry, string theory and the idea of additional dimensions of space-time. Since no higher mathematical or physics expertise is required, the book is also suitable for college and university students at the beginning of their studies. Hobby astronomers and other science enthusiasts seeking a deeper insight than can be found in popular treatments will also appreciate this unique book.
The ability of storing, managing and giving access to the huge quantity of data collected by astronomical observatories is one of the major challenges of modern astronomy. At the same time, the growing complexity of data systems implies a change of concepts: the scientist has to manipulate data as well as information. Developments of the "World Wide Web" bring answers to these problems. The book presents a wide selection of databases, archives, data centres and information systems. Descriptions are included, together with their scientific context and motivations. This volume should prove a useful tool for astronomers, librarians, data specialists and computer engineers.
This thesis is a comprehensive work that addresses many of the open questions currently being discusssed in the very-high-energy (VHE) gamma-ray community. It presents a detailed description of the MAGIC telescope together with a glimpse of the future Cherenkov Telescope Array (CTA). One section is devoted to the design, development and characterization of trigger systems for current and future imaging atmospheric Cherenkov telescopes. The book also features a state-of-the-art description of pulsar wind nebula (PWN) systems, the study of the multi-TeV spectrum of the Crab nebula, as well as the discovery of VHE gamma rays at the multiwavelength PWN 3C 58, which were sought at these wavelengths for more than twenty years. It also includes the contextualization of this discovery amongst the current population of VHE gamma-ray PWNe. Cataclysmic variable stars represent a new source of gamma ray energies, and are also addressed here. In closing, the thesis reports on the systematic search for VHE gamma-ray emissions of AE Aquarii in a multiwavelength context and the search for VHE gamma-ray variability of novae during outbursts at different wavelengths.
Humans evolved when the Sun was in the great void of the Local Bubble. The Sun entered the present environment of interstellar clouds only during the late Quaternary. Astronomical data reveal these long and short term changes in our galactic environment. Theoretical models then tell us how these changes affect interplanetary particles, planetary magnetospheres, and the Earth itself. Cosmic rays leave an isotopic signature in the paleoclimate record that helps trace the solar journey through space. This volume lays the foundation for an interdisciplinary study of the influence of interstellar material on the solar system and Earth as we travel through the Milky Way Galaxy.
This volume aims to make Stephen of Pisa and Antioch's work on the celestial sciences accessible to a wider readership, providing not just the text but a translation and introduction as well. The edition is based on the only known manuscript of the Liber Mamonis, MS Cambrai, Mediatheque d'Agglomeration, A 930. It is split into two parts: the first provides an extensive introduction to Stephen and his work, while the second features the edition and translation. A comprehensive glossary and collection of photographs of plates are also included.
This book describes the subject of electrodynamics at classical as well as quantum level, developed as an interaction at a distance. Thus it has electric charges interacting with one another directly and not through the medium of a field. In general such an interaction travels forward and backward in time symmetrically, thus apparently violating the principle of causality. It turns out, however, that in such a description the cosmological boundary conditions become very important. The theory therefore works only in a cosmology with the right boundary conditions; but when it does work it is free from the divergences that plague a quantum field theory.
This is the largest and most comprehensive atlas of the universe ever created for amateur astronomers. With finder charts of unprecedented detail, in both normal and mirror-image views, and an extensive list of 14,000 objects, it provides a detailed observing guide for almost any practical amateur astronomer, up to the most advanced. Spanning some 3,000 pages, this is a project that is possible only on CD-ROM. The CD-R pages are extensively indexed and referenced for quick location of objects. The accompanying book gives an introduction to the Atlas, showcases the maps, describes the CD-R content and organization, and includes various appendices.
This prize-winning Ph.D. thesis by Chris Harrison adopts a multi-faceted approach to address the lack of decisive observational evidence, utilising large observational data sets from several world-leading telescopes. Developing several novel observational techniques, Harrison demonstrated that energetic winds driven by Active Galactic Nuclei (AGN) are found in a large number of galaxies, with properties in agreement with model predictions. One of the key unsolved problems in astrophysics is understanding the influence of AGN, the sites of growing supermassive black holes, on the evolution of galaxies. Leading theoretical models predict that AGN drive energetic winds into galaxies, regulating the formation of stars. However, until now, we have lacked the decisive observational evidence to confirm or refute these key predictions. Careful selection of targets allowed Harrison, to reliably place these detailed observations into the context of the overall galaxy population. However, in disagreement with the model predictions, Harrison showed that AGN have little global effect on star formation in galaxies. Theoretical models are now left with the challenge of explaining these results.
In this fascinating journey to the edge of science, Vidal takes on big philosophical questions: Does our universe have a beginning and an end or is it cyclic? Are we alone in the universe? What is the role of intelligent life, if any, in cosmic evolution? Grounded in science and committed to philosophical rigor, this book presents an evolutionary worldview where the rise of intelligent life is not an accident, but may well be the key to unlocking the universe's deepest mysteries. Vidal shows how the fine-tuning controversy can be advanced with computer simulations. He also explores whether natural or artificial selection could hold on a cosmic scale. In perhaps his boldest hypothesis, he argues that signs of advanced extraterrestrial civilizations are already present in our astrophysical data. His conclusions invite us to see the meaning of life, evolution and intelligence from a novel cosmological framework that should stir debate for years to come.
This groundbreaking volume provides an up-to-date, accessible guide to Sanskrit astronomical tables and their analysis. It begins with an overview of Indian mathematical astronomy and its literature, including table texts, in the context of history of pre-modern astronomy. It then discusses the primary mathematical astronomy content of table texts and the attempted taxonomy of this genre before diving into the broad outlines of their representation in the Sanskrit scientific manuscript corpus. Finally, the authors survey the major categories of individual tables compiled in these texts, complete with brief analyses of some of the methods for constructing and using them, and then chronicle the evolution of the table-text genre and the impacts of its changing role on the discipline of Sanskrit jyotisa. There are also three appendices: one inventories all the identified individual works in the genre currently known to the authors; one provides reference information about the details of all the notational, calendric, astronomical, and other classification systems invoked in the study; and one serves as a glossary of the relevant Sanskrit terms.
The presentations of this NATO Advanced Study Institute centre around X-ray clusters of galaxies and their role in understanding the structure and evolution of the universe. Reminiscences of the beginning of the extra-solar X-ray astronomy some 30 years ago, of subsequent X-ray satellites which, among other discoveries, found galaxy clusters to be an important new class of intrinsically bright X-ray sources, and highlights from the most recent All Sky Survey by ROSAT serve as an introduction. The topics range from X-ray clusters and cluster environments to cluster masses and dynamics, cooling flows and chemical abundances, cluster lensing and the Sunyaev-Sel'dovich effect, cluster formation and evolution to large-scale structure in the universe and cosmological parameters. The reviews, introducing the various topics, generally conclude with presentations of current and future work and are frequently followed by shorter research notes pertaining to ongoing projects. More than 200 figures illustrate the discussions, more than 20 tables and many quotations in the text provide numerical data for almost 100 clusters of galaxies and give new estimates for the cosmological parameters. Together with a sample of equations, this text should constitute a useful collection of empirical and theoretical quantities and relations in extragalactic X-ray astronomy and cosmology.
Featuring more than 200 intriguing images taken by space probes travelling billions of kilometres from Earth, The Solar System is an exhilarating exploration of the mysteries of our local planetary space. Within the span of a human lifetime, our spacecraft have visited all eight planets of the Solar System, together with several dwarf planets, asteroids and comets. We have mapped the surface of Mercury and Venus in exquisite detail, landed rovers on Mars, placed orbiters around Jupiter and Saturn, and parachuted to the surface of Titan. Our emissaries have visited icy worlds five billion kilometres from home and continued onwards to reach interstellar space. The pictures and science returned by these intrepid travellers have transformed our understanding of the Solar System in which we live.
This volume contains the proceedings of possibly the last conference ever on integral-field spectroscopy. The contributors, noted authorities in the field, focus on the scientific questions that can be answered with integral-field spectroscopy, ranging from solar system studies all the way to high redshift surveys. Overall readers get a state-of-the-science review of astronomical 3D spectroscopy.
The Square Kilometre Array (SKA) Project is a global project to design and c- struct a revolutionary new radio telescope with of order 1 million square meters of collecting area in the wavelength range from3mto1cm.It will have two - ders of magnitude greater sensitivity than current telescopes and an unprecedented large instantaneous ?eld-of-view. These capabilities will ensure the SKA will play a leading role in solving the major astrophysical and cosmological questions of the day (see the science case at www.skatelescope.org/pages/page astronom.htm). The SKA will complement major ground- and space-based astronomical facilities under construction or planned in other parts of the electromagnetic spectrum (e.g. ALMA, JWST, ELT, XEUS,...). The current schedule for the SKA foresees a decision on the SKA site in 2006, a decisiononthedesignconceptin2009,constructionofthe?rstphase(international path?nder)from2010to2013,andconstructionofthefullarrayfrom2014to2020. The cost is estimated to be about 1000 M . TheSKAProjectcurrentlyinvolves45institutesin17countries,manyofwhich are involved in nationally- or regionally-funded state-of-the-art technical devel- ments being pursued ahead of the 2009 selection of design concept. This Special Issue of Experimental Astronomy provides a snapshot of SKA engineering act- ity around the world, and is based on presentations made at the SKA meeting in Penticton,BC,CanadainJuly2004.Topicscoveredincludeantennaconcepts,so- ware, signal transport and processing, radio frequency interference mitigation, and reports on related technologies in other radio telescopes now under construction. Further information on the project can be found at www.skatelescope.org. |
![]() ![]() You may like...
Data Security in Internet of Things…
Rohit Sharma, Rajendra Prasad Mahapatra, …
Hardcover
R4,759
Discovery Miles 47 590
Learn Selenium - Build data-driven test…
Unmesh Gundecha, Carl Cocchiaro
Paperback
R1,417
Discovery Miles 14 170
Smart Innovation of Web of Things
Aarti Jain, Ruben Gonzalez Crespo, …
Hardcover
R4,779
Discovery Miles 47 790
Coaching Online - A Practical Guide
Kate Anthony, DeeAnna Merz Nagel
Paperback
R972
Discovery Miles 9 720
|