![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Astronomy, space & time
The detection of radial and non-radial solar-like oscillations in thousands of G-K giants with CoRoT and Kepler is paving the road for detailed studies of stellar populations in the Galaxy. The available average seismic constraints allow largely model-independent determination of stellar radii and masses, and can be used to determine the position and age of thousands of stars in different regions of the Milky Way, and of giants belonging to open clusters. Such a close connection between stellar evolution, Galactic evolution, and asteroseismology opens a new very promising gate in our understanding of stars and galaxies. This book represents a natural progression from the collection of review papers presented in the book 'Red Giants as Probes of the Structure and Evolution of the Milky Way', which appeared in the Astrophysics and Space Science Proceedings series in 2012. This sequel volume contains review papers on spectroscopy, seismology of red giants, open questions in Galactic astrophysics, and discusses first results achieved by combining photometric/spectroscopic and seismic constraints on populations of stars observed by CoRoT and Kepler. The book also reports on discussions between expert researchers in Galactic evolution, specialists in stellar structure and asteroseismology, and key representatives of extensive ground-based spectroscopic surveys such as APOGEE and the ESO-GAIA Spectroscopic Survey, which would serve as a roadmap for future endeavours in this field of research.
The Comprehensibility of the Universe puts forward a radically new conception of science. Nicholas Maxwell argues that the prevailing view of the relation between scientific theory and evidence is untenable; he calls for a new orthodoxy which sees science as making a hierarchy of assumptions about the comprehensibility of the universe. This new conception has significant implications for both philosophy and science, and promises to heal the rift between the two.
A major fraction of star formation in the universe occurs in starbursts. These regions of particularly rapid star formation are often located towards the centers of host galaxies. Studies of this kind of star formation at high redshift have produced astonishing results over recent years that were only possible with the latest generation of large ground-based and space telescopes. The papers collected in this volume present these results in the context of the much firmer foundation of star formation in the local universe, and they emphasize all the important topics, from star formation in different environments to the cosmic star formation history.
With the onset of massive cosmological data collection through media such as the Sloan Digital Sky Survey (SDSS), galaxy classification has been accomplished for the most part with the help of citizen science communities like Galaxy Zoo. Seeking the wisdom of the crowd for such Big Data processing has proved extremely beneficial. However, an analysis of one of the Galaxy Zoo morphological classification data sets has shown that a significant majority of all classified galaxies are labelled as Uncertain . This book reports on how to use data mining, more specifically clustering, to identify galaxies that the public has shown some degree of uncertainty for as to whether they belong to one morphology type or another. The book shows the importance of transitions between different data mining techniques in an insightful workflow. It demonstrates that Clustering enables to identify discriminating features in the analysed data sets, adopting a novel feature selection algorithms called Incremental Feature Selection (IFS). The book shows the use of state-of-the-art classification techniques, Random Forests and Support Vector Machines to validate the acquired results. It is concluded that a vast majority of these galaxies are, in fact, of spiral morphology with a small subset potentially consisting of stars, elliptical galaxies or galaxies of other morphological variants."
This is a follow-on book to the introductory textbook "Physics of the Solar Corona" previously published in 2004 by the same author, which provided a systematic introduction and covered mostly scientific results from the pre-2000 era. Using a similar structure as the previous book the second volume provides a seamless continuation of numerous novel research results in solar physics that emerged in the new millennium (after 2000) from the new solar missions of RHESSI, STEREO, Hinode, CORONAS, and the Solar Dynamics Observatory (SDO) during the era of 2000-2018. The new solar space missions are characterized by unprecedented high-resolution imaging, time resolution, spectral capabilities, stereoscopy and tomography, which reveal the intricate dynamics of magneto-hydrodynamic processes in the solar corona down to scales of 100 km. The enormous amount of data streaming down from SDO in Terabytes per day requires advanced automated data processing methods. The book focuses exclusively on new research results after 2000, which are reviewed in a comprehensive manner, documented by over 3600 literature references, covering theory, observations, and numerical modeling of basic physical processes that are observed in high-temperature plasmas of the Sun and other astrophysical objects, such as plasma instabilities, coronal heating, magnetic reconnection processes, coronal mass ejections, plasma waves and oscillations, or particle acceleration.
Interstellar and solar system solids are different stages of the same materials. In this book, the sources and evolution of circumstellar dust, interstellar dust, comets, meteorites and interplanetary dust are carefully discussed in the context of their interrelations. One of the major questions raised is: how do characteristically 1/10 micron interstellar dust particles evolve to rocky materials 1000 times larger or more? The closest we appear to be getting in relating interstellar dust to particles in the solar system is the evidence for submicron organic coated particles in interplanetary dust particles collected in the upper atmosphere, which allow direct laboratory investigation on Earth. What we know about comets, however, either results from remote observation or space measurements in situ. Comet volatiles compare very well with interstellar ices. These astrophysical problems bring to bear a very wide range of theoretical, observational and laboratory expertise in such fields as astronomy, physics and chemistry and, with the evidence of complex prebiotic organics in meteorites.
First Snow White encounters one of the Little People, then one of the Even Smaller People, and finally one of the Truly Infinitesimal People. And no matter how diligently she searches, the only dwarves she can find are collapsed stars! Clearly, she's not at home in her well-known Brothers Grimm fairy tale, but instead in a strange new landscape that features quantum behavior, the wavelike properties of particles, and the Uncertainty Principle. She (and we) must have entered, in short, one of the worlds created by Robert Gilmore, physicist and fabulist.
Statistical literacy is critical for the modern researcher in Physics and Astronomy. This book empowers researchers in these disciplines by providing the tools they will need to analyze their own data. Chapters in this book provide a statistical base from which to approach new problems, including numerical advice and a profusion of examples. The examples are engaging analyses of real-world problems taken from modern astronomical research. The examples are intended to be starting points for readers as they learn to approach their own data and research questions. Acknowledging that scientific progress now hinges on the availability of data and the possibility to improve previous analyses, data and code are distributed throughout the book. The JAGS symbolic language used throughout the book makes it easy to perform Bayesian analysis and is particularly valuable as readers may use it in a myriad of scenarios through slight modifications. This book is comprehensive, well written, and will surely be regarded as a standard text in both astrostatistics and physical statistics. Joseph M. Hilbe, President, International Astrostatistics Association, Professor Emeritus, University of Hawaii, and Adjunct Professor of Statistics, Arizona State University
This symposium was devoted to the so-called minor bodies in the Solar System, and their mutual interrelationships. Asteroids, comets and meteors provide essential information on the history of the Solar System, starting with the early phases of planetary formation, until the present epoch. Different evolutionary processes have shaped the physical characteristics of the populations of minor bodies. Among them, collisional phenomena have played an essential role, as has been generally recognized by modern planetary research. This symposium was one step in the effort to sketch a general unifying scenario of the properties of the different populations of minor bodies, which are generally studied by separate scientific communities. In particular, the most recent findings on the interrelationships between asteroids, comets and meteoroids suggest that an interdisciplinary approach should be preferred. Only in this way can the properties of different populations of minor bodies be interpreted in the framework of a coherent picture of the history and evolution of the Solar System.
Pulsar timing is a promising method for detecting gravitational waves in the nano-Hertz band. In his prize winning Ph.D. thesis Rutger van Haasteren deals with how one takes thousands of seemingly random timing residuals which are measured by pulsar observers, and extracts information about the presence and character of the gravitational waves in the nano-Hertz band that are washing over our Galaxy. The author presents a sophisticated mathematical algorithm that deals with this issue. His algorithm is probably the most well-developed of those that are currently in use in the Pulsar Timing Array community. In chapter 3, the gravitational-wave memory effect is described. This is one of the first descriptions of this interesting effect in relation with pulsar timing, which may become observable in future Pulsar Timing Array projects. The last part of the work is dedicated to an effort to combine the European pulsar timing data sets in order to search for gravitational waves. This study has placed the most stringent limit to date on the intensity of gravitational waves that are produced by pairs of supermassive black holes dancing around each other in distant galaxies, as well as those that may be produced by vibrating cosmic strings. Rutger van Haasteren has won the 2011 GWIC Thesis Prize of the Gravitational Wave International Community for his innovative work in various directions of the search for gravitational waves by pulsar timing. The work is presented in this Ph.D. thesis.
The book summarizes the knowledge and experiences concerning the role of halogens during various geochemical processes, such as diagenesis, ore-formation, magma evolution, metasomatism, mineralization, and metamorphism in the crust and mantle of the Earth. It comprises the role of halogens in other terrestrial worlds like volatile-rich asteroids, Mars, and the ice moons of Jupiter and Saturn. Review chapters outline and expand upon the basis of our current understanding regarding how halogens contribute to the geochemical/geophysical evolution and stability of terrestrial worlds overall.
The Juno mission to Jupiter is one of the most ambitious, daring and challenging solar system exploration missions ever conceived. Next to the Sun, Jupiter is the largest object in our solar system. As such, it is both a record and driver of the formation and evolution of the planets -- no other object in our solar system can tell us more about the origin of planetary systems. Understanding the details of giant planet formation, structure, composition and powerful magnetospheric environment required a new perspective close up and over the poles of Jupiter -- an orbit never before attempted. Juno was specifically designed for this challenge, entering into the harshest planetary environment known in the solar system. This volume describes the mission design, scientific strategies and instrument payload that enable Juno to peer deep into Jupiter's atmosphere and reveal the fundamental process of the formation and early evolution of our solar system. In these papers, the Juno instrument teams describe their investigations, which include gravity radio science, microwave radiometers, magnetometers, an infrared imager auroral mapper, an ultraviolet imager and spectrograph, a visible light imager known as JunoCam, low and high energy particle detectors and plasma wave and radio electromagnetic sensors. The articles also describe a radiation monitoring experiment and the extensive laboratory measurements undertaken to assist with the analysis and interpretation of Juno's pioneering investigation of Jupiter's deep atmosphere. Originally published in Space Science Reviews, Volume 213, Issue 1-4, November 2017
This book employs computer simulations of 'artificial' Universes to investigate the properties of two popular alternatives to the standard candidates for dark matter (DM) and dark energy (DE). It confronts the predictions of theoretical models with observations using a sophisticated semi-analytic model of galaxy formation. Understanding the nature of dark matter (DM) and dark energy (DE) are two of the most central problems in modern cosmology. While their important role in the evolution of the Universe has been well established-namely, that DM serves as the building blocks of galaxies, and that DE accelerates the expansion of the Universe-their true nature remains elusive. In the first half, the authors consider 'sterile neutrino' DM, motivated by recent claims that these particles may have finally been detected. Using sophisticated models of galaxy formation, the authors find that future observations of the high redshift Universe and faint dwarf galaxies in the Local Group can place strong constraints on the sterile neutrino scenario. In the second half, the authors propose and test novel numerical algorithms for simulating Universes with a 'modified' theory of gravity, as an alternative explanation to accelerated expansion. The authors' techniques improve the efficiency of these simulations by more than a factor of 20 compared to previous methods, inviting the readers into a new era for precision cosmological tests of gravity.
'There is evidence to suggest that our world and everything in it - from snowflakes to maple trees to falling stars and spinning electrons - are only ghostly images, projections from a level of reality literally beyond both space and time.' This is the astonishing idea behind the holographic theory of the universe, pioneered by two eminent thinkers: physicist David Bohm, a former protege of Albert Einstein, and quantum physicist Karl Pribram. The holographic theory of the universe encompasses consciousness and reality as we know them, but can also explain such hitherto unexplained phenomena as telepathy, out-of-body experiences and even miraculous healing. In this remarkable book, Michael Talbot reveals the extraordinary depth and power of the holographic theory of the universe, illustrating how it makes sense of the entire range of experiences within our universe - and in other universes beyond our own.
The work in this thesis was a part of the experiment of squeezed light injection into the LIGO interferometer. The work first discusses the detailed design of the squeezed light source which would be used for the experiment. The specific design is the doubly-resonant, traveling-wave bow-tie cavity squeezed light source with a new modified coherent sideband locking technique. The thesis describes the properties affecting the squeezing magnitudes and offers solutions which improve the gain. The first part also includes the detailed modeling of the back-scattering noise of a traveling Optical Parametric Oscillator (OPO). In the second part, the thesis discusses the LIGO Squeezed Light Injection Experiment, undertaken to test squeezed light injection into a 4km interferometric gravitational wave detector. The results show the first ever measurement of squeezing enhancement in a full-scale suspended gravitational wave interferometer with Fabry-Perot arms. Further, it showed that the presence of a squeezed-light source added no additional noise in the low frequency band. The result was the best sensitivity achieved by any gravitational wave detector. The thesis is very well organized with the adequate theoretical background including basics of Quantum Optics, Quantum noise pertaining to gravitational wave detectors in various configurations, along with extensive referencing necessary for the experimental set-up. For any non-experimental scientist, this introduction is a very useful and enjoyable reading. The author is the winner of the 2013 GWIC Theses Prize.
Time is relative, situation-dependent, location- and culturally-dependent, and very much subjective. Yet we treat it as if it were objective. We share standardized time, and we are dependent on it for almost everything we do. When it comes to waking up, business meetings, transportation, finding your way via GPS, seeing friends, watching a show, we are all dependent on a standardized notion of time and time measurement. The future gives us hope and deadlines drive innovation and productivity. Time drives us forward and we talk about time - all the time! The word "time" is the most used noun in English, followed by "year" in third place and "day" in fifth. We are obsessed with it, for a lot of very good and practical reasons. The book looks at time through different perspectives (ranging from physics, history, philosophy, anthropology to art, business & politics, biology and psychology). The author's aim is to bring us closer to the nature and our experience of time by looking at it from different lenses to improve our understanding of what time is and what it is not - and to use that knowledge to improve how we organize ourselves around time. It's by better understanding time's nature and experience that we can keep the positive and productive elements of time and get rid of the unhealthy time practices in our lives.
Examines each of these parameters in crucial depth and makes the argument that life forms we would recognize may be more common in our solar system than many assume. Considers exotic forms of life that would not have to rely on carbon as the basic chemical element, solar energy as the main energy source, or water as the primary solvent and the question of detecting bio- and geosignatures of such life forms, ranging from earth environments to deep space. Seeks an operational definition of life and investigate the realm of possibilities that nature offers to realize this very special state of matter. Avoids scientific jargon wherever possible to make this intrinsically interdisciplinary subject understandable to a broad range of readers.
Written by one of the astronomers who 'lived the dream' of working there this book is a restrospectively expanded diary featuring the 'birth and long life' of what was a truely innovative telescope. Based on input received from people involved in its planning, building, operation, and many scientists who observed with it, the author tells this success story of The United Kingdom Infrared Telescope (UKIRT). Conceived in the mid 1970's as a cheap and cheerful light-bucket for the newly emerging field of infrared astronomy it has re-invented itself once a decade to remain at the forefront of infrared astronomy for more than 30 years. Even in 2012 / 2013, when ironically it faced almost certain closure, it remained one of the most scientifically productive telescopes in the world. Everybody, including amateur and professional astronomers, interested in real astronomy projects will enjoy reading that story and meet (again) the persons who lived it.
An "intriguing and accessible" (Publishers Weekly) interpretation of the life of Galileo Galilei, one of history's greatest and most fascinating scientists, that sheds new light on his discoveries and how he was challenged by science deniers. "We really need this story now, because we're living through the next chapter of science denial" (Bill McKibben). Galileo's story may be more relevant today than ever before. At present, we face enormous crises-such as minimizing the dangers of climate change-because the science behind these threats is erroneously questioned or ignored. Galileo encountered this problem 400 years ago. His discoveries, based on careful observations and ingenious experiments, contradicted conventional wisdom and the teachings of the church at the time. Consequently, in a blatant assault on freedom of thought, his books were forbidden by church authorities. Astrophysicist and bestselling author Mario Livio draws on his own scientific expertise and uses his "gifts as a great storyteller" (The Washington Post) to provide a "refreshing perspective" (Booklist) into how Galileo reached his bold new conclusions about the cosmos and the laws of nature. A freethinker who followed the evidence wherever it led him, Galileo was one of the most significant figures behind the scientific revolution. He believed that every educated person should know science as well as literature, and insisted on reaching the widest audience possible, publishing his books in Italian rather than Latin. Galileo was put on trial with his life in the balance for refusing to renounce his scientific convictions. He remains a hero and inspiration to scientists and all of those who respect science-which, as Livio reminds us in this "admirably clear and concise" (The Times, London) book, remains threatened everyday.
This book offers review chapters written by invited speakers of the 3rd Session of the Sant Cugat Forum on Astrophysics - Gravitational Waves Astrophysics. All chapters have been peer reviewed. The book goes beyond normal conference proceedings in that it provides a wide panorama of the astrophysics of gravitational waves and serves as a reference work for researchers in the field. |
![]() ![]() You may like...
Logic Colloquium '01 - Lecture Notes In…
Matthias Baaz, Sy-David Friedman, …
Paperback
Complexity and Randomness in Group…
Frederique Bassino, Ilya Kapovich, …
Hardcover
R4,919
Discovery Miles 49 190
IoT Sensor-Based Activity Recognition…
MD Atiqur Rahman Ahad, Anindya Das Antar, …
Hardcover
R4,320
Discovery Miles 43 200
Multimodal Agents for Ageing and…
Juliana Miehle, Wolfgang Minker, …
Hardcover
R3,772
Discovery Miles 37 720
New Developments of IT, IoT and ICT…
Kazumi Nakamatsu, Roumen Kountchev, …
Hardcover
R9,925
Discovery Miles 99 250
Blockchain Cybersecurity, Trust and…
Kim-Kwang Raymond Choo, Ali Dehghantanha, …
Hardcover
R5,029
Discovery Miles 50 290
|