Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Astronomy, space & time
This book shares a range of new and diverse insights on On-Orbit Servicing (OOS), and examines its implications especially from political, legal, economic, and security perspectives. OSS has been evolving rapidly and presents both challenges and opportunities, such as in-space repairs, refuelling, refurbishment of spacecraft and servicing satellites, which could play a critical role in extending satellite lifecycles, while also representing a valuable next step in debris mitigation. At the same time, many legal questions have arisen in connection with OOS: the need to prevent hostile actions under the pretext of OSS; the distinction between governmental and non-governmental OOS operators; the status of re-worked and recycled space objects; the issue of control in terms of operations performed in orbit, i.e., in the international sphere; the status of objects manufactured in orbit and applicable law, including liability and registration; and the impacts on insurance law and risk management. Finally, the book examines the implications of OOS for emerging space actors in the Global South, and recommends a paradigm shift to help developing countries fully recognise the necessity and urgency of being involved in discussions on OSS, as opposed to leaving it up to the developed space actors. This book will be of great interest to practitioners, academics, and students working in the space sector and related fields.
A conference on "Observational Evidence for Black Holes in the Universe" was held in Calcutta during January 10-17, 1998. This was the first time that experts had gathered to debate and discuss topics such as: Should black holes exist?; If so, how to detect them?; And Have we found them? This book is the essence of this gathering. Black holes are enigmatic objects since it is impossible to locate them through direct observations. State-of-the-art theoretical works and numerical simulations have given us enough clues of what to look for. Observations, from both ground and space-based missions, have been able to find these tell-tale signatures. This book is a compendium of our present knowledge about these theories and observations at the end of the 20th century. Combined, they give an idea of whether black holes, galactic as well as extragalactic, have been detected or not.
This book addresses and reviews many of the still little understood questions related to the processes underlying planetary magnetic fields and their interaction with the solar wind. With focus on research carried out within the German Priority Program "PlanetMag", it also provides an overview of the most recent research in the field. Magnetic fields play an important role in making a planet habitable by protecting the environment from the solar wind. Without the geomagnetic field, for example, life on Earth as we know it would not be possible. And results from recent space missions to Mars and Venus strongly indicate that planetary magnetic fields play a vital role in preventing atmospheric erosion by the solar wind. However, very little is known about the underlying interaction between the solar wind and a planet's magnetic field. The book takes a synergistic interdisciplinary approach that combines newly developed tools for data acquisition and analysis, computer simulations of planetary interiors and dynamos, models of solar wind interaction, measurement of ancient terrestrial rocks and meteorites, and laboratory investigations.
This book describes how and why the early modern period witnessed the marginalisation of astrology in Western natural philosophy, and the re-adoption of the cosmological view of the existence of a plurality of worlds in the universe, allowing the possibility of extraterrestrial life. Founded in the mid-1990s, the discipline of astrobiology combines the search for extraterrestrial life with the study of terrestrial biology - especially its origins, its evolution and its presence in extreme environments. This book offers a history of astrobiology's attempts to understand the nature of life in a larger cosmological context. Specifically, it describes the shift of early modern cosmology from a paradigm of celestial influence to one of celestial inhabitation. Although these trends are regarded as consequences of Copernican cosmology, and hallmarks of a modern world view, they are usually addressed separately in the historical literature. Unlike others, this book takes a broad approach that examines the relationship of the two. From Influence to Inhabitation will benefit both historians of astrology and historians of the extraterrestrial life debate, an audience which includes researchers and advanced students studying the history and philosophy of astrobiology. It will also appeal to historians of natural philosophy, science, astronomy and theology in the early modern period.
Here is an accurate and readable translation of a seminal article by Henri Poincare that is a classic in the study of dynamical systems popularly called chaos theory. In an effort to understand the stability of orbits in the solar system, Poincare applied a Hamiltonian formulation to the equations of planetary motion and studied these differential equations in the limited case of three bodies to arrive at properties of the equations' solutions, such as orbital resonances and horseshoe orbits. Poincare wrote for professional mathematicians and astronomers interested in celestial mechanics and differential equations. Contemporary historians of math or science and researchers in dynamical systems and planetary motion with an interest in the origin or history of their field will find his work fascinating.
This book provides a compilation of in-depth articles and reviews on key topics within gravitation, cosmology and related issues. It is a celebratory volume dedicated to Prof. Thanu Padmanabhan ("Paddy"), the renowned relativist and cosmologist from IUCAA, India, on the occasion of his 60th birthday. The authors, many of them leaders of their fields, are all colleagues, collaborators and former students of Paddy, who have worked with him over a research career spanning more than four decades. Paddy is a scientist of diverse interests, who attaches great importance to teaching. With this in mind, the aim of this compilation is to provide an accessible pedagogic introduction to, and overview of, various important topics in cosmology, gravitation and astrophysics. As such it will be an invaluable resource for scientists, graduate students and also advanced undergraduates seeking to broaden their horizons.
Based on 3D smoothed particle hydrodynamics simulations performed with unprecedented high resolution, this book examines the giant impacts that dominate many planets' late accretion and evolution. The numerical methods developed are now publicly available, greatly facilitating future studies of planetary impacts in our solar system and exoplanetary systems. The book focuses on four main topics: (1) The development of new methods to construct initial conditions as well as a hydrodynamical simulation code to evolve them, using 1000 times more simulation particles than the previous standard. (2) The numerical convergence of giant impact simulations -- standard-resolution simulations fail to converge on even bulk properties like the post-impact rotation period. (3) The collision thought to have knocked over the planet Uranus causing it to spin on its side. (4) The erosion of atmospheres by giant impacts onto terrestrial planets, and the first full 3D simulations of collisions in this regime.
This book traces the development of Kepler's ideas along with his unsteady wanderings in a world dominated by religious turmoil. Johannes Kepler, like Galileo, was a supporter of the Copernican heliocentric world model. From an early stage, his principal objective was to discover "the world behind the world", i.e. to identify the underlying order and the secrets that make the world function as it does: the hidden world harmony. Kepler was driven both by his religious belief and Greek mysticism, which he found in ancient mathematics. His urge to find a construct encompassing the harmony of every possible aspect of the world - including astronomy, geometry and music - is seen as a manifestation of a deep human desire to bring order to the apparent chaos surrounding our existence. This desire continues to this day as we search for a theory that will finally unify and harmonise the forces of nature.
This book presents key works of Boris Hessen, outstanding Soviet philosopher of science, available here in English for the first time. Quality translations are accompanied by an editors' introduction and annotations. Boris Hessen is known in history of science circles for his "Social and Economic Roots of Newton's Principia" presented in London (1931), which inspired new approaches in the West. As a philosopher and a physicist, he was tasked with developing a Marxist approach to science in the 1920s. He studied the history of physics to clarify issues such as reductionism and causality as they applied to new developments. With the philosophers called the "Dialecticians", his debates with the opposing "Mechanists" on the issue of emergence are still worth studying and largely ignored in the many recent works on this subject. Taken as a whole, the book is a goldmine of insights into both the foundations of physics and Soviet history.
Many of the seven billion people who live on the earth look to either science or religion as the ultimate source of authority in their lives. But why must there be a conflict between the two? Why can't science and religion support each other? "The Unity of Truth" shows why and how it makes perfect sense for science and religion to be mutually supportive. Beginning with the accepted truths of modern science and the beliefs of traditional Christianity, authors Allen A. Sweet, C. Frances Sweet, and Fritz Jaensch use their diverse expertise to deliver a deeper level of understanding of the ways in which science and religion can coexist. Relying on a thorough knowledge of physics, theology, and mathematics, this study addresses the paradox of how God communicates with our material world without violating any of the laws of science. Individual chapters discuss some of the most popular quandaries associated with combining science and religion. In addition, it considers the beginning and end of our universe, the evolution of life, and the meaning of human emotions from the scientific and theological perspectives, thus pushing understanding to a higher plateau of wisdom. Rational and devoid of rhetoric, "The Unity of Truth" seeks to help resolve the ongoing battle between religion and science, delivering a thoughtful narrative designed to open minds and hearts.
The proceedings of the 2nd SOHO Workshop published in this volume provide a concise overview of the most relevant aspects of mass supply and flows in the solar corona, focusing on: fine scale structures; loops and prominences; streamers; and coronal holes and solar wind. Each topic is introduced by three reviews - the first giving a summary of the status of relevant observations, the second illustrating the status of related theoretical work, and the third summarizing advances in the field to be expected as a result of future SOHO observations. The book also includes a number of specialized contributions. This volume aims to create a general awareness of the opportunities offered by SOHO, in addition to providing a basis for developing collaborative projects. It should also provide scientists already active in the field with easy access to information about future SOHO activities, while young researchers can learn about those topics which are currently regarded as being most relevant in this rapidly evolving discipline.
In June of 1996, at the seaside resort of Guaruja, Brazil, a renowned group of researchers in space and astrophysical plasmas met to provide a forum on advanced topics on astrophysical and space plasmas at a school consisting of some 60 students and teachers, mainly from Brazil and Argentina, but also from all the other parts of the globe. The purpose was to provide an update on the latest theories, observations, and simulations of space-astrophysical plasma phenomena. The topics covered included: space plasma mechanisms for particle acceleration, nonthermal emission in cosmic plasma, magnetohydrodynamic instabilities in solar, interstellar, and other cosmic objects, magnetic field line reconnection and merging, the nonlinear and often chaotic structure of astrophysical plasmas, and the advances in high performance supercomputing resources to replicate the observed phenomena. The lectures were presented by Professor Mark Birkinshaw of the Harvard-Smithsonian Center for Astrophysics and the University of Bristol; Dr Anthony Peratt, Los Alamos National Laboratory Scientific Advisor to the United States Department of Energy; Dr Dieter Biskamp of the Max Planck Institute for Plasma Physics, Garching, Germany; Professor Donald Melrose, Director, Centre for Theoretical Astrophysics, University of Sydney, Australia; Professor Abraham Chian of the National Institute for Space Research, Brazil; and Professor Nelson Fiedler-Ferrara of the University of Sao Paulo, Brazil. As summarized by Professor Reuven Opher, Institute of Astronomy and Geophysics, University of Sao Paulo, the advanced or interested student of space and astrophysical plasmas will find reference to nearly all modern aspects in the field of Plasma Astrophysics and Cosmology in the presented lectures.
This book presents a complete overview of what we know, and would like to know, about the evolution and structure of massive stars. The spectra of early-type stars are produced by elaborate model atmospheres enveloping the internal structure. The book should be of value to researchers into the evolution, structure and atmospheres of massive stars. The book is also appropriate for astrophysics courses at university level, where it can be used to get acquainted with the most recent observational data, modelling of the internal and atmospheric structure, and the refined development of single and binary evolution scenarios of massive stars.
This new scientific biography explores the influences on, and of, Galileo's exceptional work, thereby revealing novel connections with the worldviews of his age and beyond. Galileo Galilei's contribution to science is unquestionable. And his conflict with the church establishment of his time is no less famous. In this book, authored by a physicist and history scholar, Galileo's life and work are described against a backdrop of the prior scientific state of the art in his various fields of achievement. Particular emphasis is placed on Galileo's vision of the world in relation to historic and also future cosmological models. The impact of his discoveries and theories for the later development of physics and astronomy is a further focus of the narrative.
This book uses new data from the very low radio frequency telescope LOFAR to analyse the magnetic structure in the giant radio galaxy NGC6251. This analysis reveals that the magnetic field strength in the locality of this giant radio galaxy is an order of magnitude lower than in other comparable systems. Due to the observational limitations associated with capturing such huge astrophysical structures, giant radio galaxies are historically a poorly sampled population of objects; however, their preferential placement in the more rarefied regions of the cosmic web makes them a uniquely important probe of large-scale structures. In particular, the polarisation of the radio emissions from giant radio galaxies is one of the few tools available to us that can be used to measure magnetic fields in regions where the strength of those fields is a key differentiator for competing models of the origin of cosmic magnetism. Low frequency polarisation data are crucial for detailed analyses of magnetic structure, but they are also the most challenging type of observational data to work with. This book presents a beautifully coupled description of the technical and scientific analysis required to extract valuable information from such data and, as the new generation of low frequency radio telescopes reveals the larger population of giant radio galaxies, it offers a significant resource for future analyses.
Of Clocks and Time takes readers on a five-stop journey through the physics and technology (and occasional bits of applications and history) of timekeeping. On the way, conceptual vistas and qualitative images abound, but since mathematics is spoken everywhere the book visits equations, quantitative relations, and rigorous definitions are offered as well. The expedition begins with a discussion of the rhythms produced by the daily and annual motion of sun, moon, planets, and stars. Centuries worth of observation and thinking culminate in Newton's penetrating theoretical insights since his notion of space and time are still influential today. During the following two legs of the trip, tools are being examined that allow us to measure hours and minutes and then, with ever growing precision, the tiniest fractions of a second. When the pace of travel approaches the ultimate speed limit, the speed of light, time and space exhibit strange and counter-intuitive traits. On this fourth stage of the journey, Einstein is the local tour guide whose special and general theories of relativity explain the behavior of clocks under these circumstances. Finally, the last part of the voyage reverses direction, moving ever deeper into the past to explore how we can tell the age of "things" - including that of the universe itself.
This book provides the only critical edition and English translation of Mahmud al-Jaghmini's al-Mulakhkhas fi al-hay'a al-basita, the most widely circulated Arabic treatise on Ptolemaic astronomy ever written. Composed in the early 13th century, this introductory textbook played a crucial role in the teaching, dissemination, and institutional instruction of Islamic astronomy well into the 19th century (and beyond). Establishing the base text is a fundamental prerequisite for gaining insights into what was considered an elementary astronomical textbook in Islam and also for understanding the extensive commentary tradition that built upon it. Within this volume, the Mulakhkhas is situated within the broader context of the genre of literature termed 'ilm al-hay'a, which has become the subject of intensive research over the past 25 years. In so doing, it provides a survey of summary accounts of theoretical astronomy of Jaghmini's predecessors, both Ancient and Islamic, which could have served as potential sources for the Mulakhkhas. Jaghmini's dates (which until now remained unsettled) are established, and it is definitively shown that he composed not only the Mulakhkhas but also other scientific treatises, including the popular medical treatise al-Qanunca, during a period that has been deemed one of scientific decline and stagnation in Islamic lands. The book will be of particular interest to scholars engaged in the study of Islamic theoretical astronomy, but is accessible to a general readership interested in learning what constituted an introduction to Ptolemaic astronomy in Islamic lands.
This monograph traces the development of our understanding of how and where energetic particles are accelerated in the heliosphere and how they may reach the Earth. Detailed data sets are presented which address these topics. The bulk of the observations are from spacecraft in or near the ecliptic plane. It is timely to present this subject now that Voyager-1 has entered the true interstellar medium. Since it seems unlikely that there will be a follow-on to the Voyager programme any time soon, the data we already have regarding the outer heliosphere are not going to be enhanced for at least 40 years.
This thesis describes the physics and computational aspects of an end-to-end simulator to predict the performance of a Space-based Far Infrared Interferometer. The present thesis also includes, the science capabilities and instrumental state-of-the art. The latter is the ambitious next step which the Far-Infrared Astrophysical community needs to take to improve in anyway on the results of the most recent and current space telescopes in this wavelength region. This thesis outlines the requirements involved in such a mission and describes the most promising technique to capture most of the astrophysical information by combining spectroscopy to spatial interferometer. The simulation of such a system is extremely complex requiring multiple Fourier transforms each of which is subject to instrument non-idealities and appropriate optimization techniques. As a conclusion, the thesis provides an example of the basic performance achievable with such an instrument when targeting a young star formation region. |
You may like...
Cosmic Perspective, The - Pearson New…
Jeffrey Bennett, Megan Donahue, …
Paperback
R2,406
Discovery Miles 24 060
Proceedings of the American Association…
Assoc for the Advancement of Science
Hardcover
R639
Discovery Miles 6 390
|