![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Astronomy, space & time
This thesis provides new insights into the seemingly anomalous ubiquity of lithium-rich red giant stars. The theory of stellar evolution, one of the most successful models of modern astrophysics, predicts that red giant stars should display negligible levels of lithium (Li) on their surfaces. However, Li-rich giants, defined as those showing more than three times the Li content of the Sun, are found everywhere astronomers look in apparent defiance of established theory. The author addresses this problem, analyzing the different possible explanations for such an anomaly, which include interaction with a binary companion, the production of Li in the interior of the star with its subsequent transport to stellar exteriors, and the stellar interaction with planets. The author focuses on this last possibility, where the Li enrichment may be due to the ingestion of planets or brown dwarfs as the stars in question grew in size while becoming giants. She shows that this process is indeed able to explain an important fraction of giants with Li levels above the three times solar threshold, but that some other mechanism is needed to explain the remaining fraction. While this is an important discovery in its own right, the result that makes this thesis groundbreaking is its demonstration that the threshold between Li-normal and Li-rich is mass dependent rather than a fixed proportion of the Sun's content. This corrects a fundamental misapprehension of the phenomenon and opens up a new framework in which to understand and solve the problem. Finally, the author presents interesting observational applications and samples with which to test this new approach to the problem of Li enrichment in giants.
Covering both astronomical and geophysical perspectives, this book describes changes in the Earth's orientation, specifically precession and nutation, and how they are observed and computed in terms of tidal forcing and models of the Earth's interior. Following an introduction to key concepts and elementary geodetic theory, the book describes how precise measurements of the Earth's orientation are made using observations of extra-galactic radio-sources by Very Long Baseline Interferometry techniques. It demonstrates how models are used to accurately pinpoint the location and orientation of the Earth with reference to the stars, and how to determine variations in its rotation speed. A theoretical framework is also presented that describes the role played by the structure and properties of the Earth's deep interior. Incorporating suggestions for future developments in nutation theory for the next generation models, this book is ideal for advanced-level students and researchers in solid Earth geophysics, planetary science and astronomy.
The 2020 International Conference on Uncertainty Quantification & Optimization gathered together internationally renowned researchers in the fields of optimization and uncertainty quantification. The resulting proceedings cover all related aspects of computational uncertainty management and optimization, with particular emphasis on aerospace engineering problems. The book contributions are organized under four major themes: Applications of Uncertainty in Aerospace & Engineering Imprecise Probability, Theory and Applications Robust and Reliability-Based Design Optimisation in Aerospace Engineering Uncertainty Quantification, Identification and Calibration in Aerospace Models This proceedings volume is useful across disciplines, as it brings the expertise of theoretical and application researchers together in a unified framework.
This book explores the dynamics of planetary and stellar fluid layers, including atmospheres, oceans, iron cores, and convective and radiative zones in stars, describing the different theoretical, computational and experimental methods used to study these problems in fluid mechanics, including the advantages and limitations of each method for different problems. This scientific domain is by nature interdisciplinary and multi-method, but while much effort has been devoted to solving open questions within the various fields of mechanics, applied mathematics, physics, earth sciences and astrophysics, and while much progress has been made within each domain using theoretical, numerical and experimental approaches, cross-fertilizations have remained marginal. Going beyond the state of the art, the book provides readers with a global introduction and an up-to-date overview of relevant studies, fully addressing the wide range of disciplines and methods involved. The content builds on the CISM course "Fluid mechanics of planets and stars", held in April 2018, which was part of the research project FLUDYCO, supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program.
This book addresses and reviews many of the still little understood questions related to the processes underlying planetary magnetic fields and their interaction with the solar wind. With focus on research carried out within the German Priority Program "PlanetMag", it also provides an overview of the most recent research in the field. Magnetic fields play an important role in making a planet habitable by protecting the environment from the solar wind. Without the geomagnetic field, for example, life on Earth as we know it would not be possible. And results from recent space missions to Mars and Venus strongly indicate that planetary magnetic fields play a vital role in preventing atmospheric erosion by the solar wind. However, very little is known about the underlying interaction between the solar wind and a planet's magnetic field. The book takes a synergistic interdisciplinary approach that combines newly developed tools for data acquisition and analysis, computer simulations of planetary interiors and dynamos, models of solar wind interaction, measurement of ancient terrestrial rocks and meteorites, and laboratory investigations.
Here is an accurate and readable translation of a seminal article by Henri Poincare that is a classic in the study of dynamical systems popularly called chaos theory. In an effort to understand the stability of orbits in the solar system, Poincare applied a Hamiltonian formulation to the equations of planetary motion and studied these differential equations in the limited case of three bodies to arrive at properties of the equations' solutions, such as orbital resonances and horseshoe orbits. Poincare wrote for professional mathematicians and astronomers interested in celestial mechanics and differential equations. Contemporary historians of math or science and researchers in dynamical systems and planetary motion with an interest in the origin or history of their field will find his work fascinating.
This book provides a compilation of in-depth articles and reviews on key topics within gravitation, cosmology and related issues. It is a celebratory volume dedicated to Prof. Thanu Padmanabhan ("Paddy"), the renowned relativist and cosmologist from IUCAA, India, on the occasion of his 60th birthday. The authors, many of them leaders of their fields, are all colleagues, collaborators and former students of Paddy, who have worked with him over a research career spanning more than four decades. Paddy is a scientist of diverse interests, who attaches great importance to teaching. With this in mind, the aim of this compilation is to provide an accessible pedagogic introduction to, and overview of, various important topics in cosmology, gravitation and astrophysics. As such it will be an invaluable resource for scientists, graduate students and also advanced undergraduates seeking to broaden their horizons.
This book shares a range of new and diverse insights on On-Orbit Servicing (OOS), and examines its implications especially from political, legal, economic, and security perspectives. OSS has been evolving rapidly and presents both challenges and opportunities, such as in-space repairs, refuelling, refurbishment of spacecraft and servicing satellites, which could play a critical role in extending satellite lifecycles, while also representing a valuable next step in debris mitigation. At the same time, many legal questions have arisen in connection with OOS: the need to prevent hostile actions under the pretext of OSS; the distinction between governmental and non-governmental OOS operators; the status of re-worked and recycled space objects; the issue of control in terms of operations performed in orbit, i.e., in the international sphere; the status of objects manufactured in orbit and applicable law, including liability and registration; and the impacts on insurance law and risk management. Finally, the book examines the implications of OOS for emerging space actors in the Global South, and recommends a paradigm shift to help developing countries fully recognise the necessity and urgency of being involved in discussions on OSS, as opposed to leaving it up to the developed space actors. This book will be of great interest to practitioners, academics, and students working in the space sector and related fields.
This book describes how and why the early modern period witnessed the marginalisation of astrology in Western natural philosophy, and the re-adoption of the cosmological view of the existence of a plurality of worlds in the universe, allowing the possibility of extraterrestrial life. Founded in the mid-1990s, the discipline of astrobiology combines the search for extraterrestrial life with the study of terrestrial biology - especially its origins, its evolution and its presence in extreme environments. This book offers a history of astrobiology's attempts to understand the nature of life in a larger cosmological context. Specifically, it describes the shift of early modern cosmology from a paradigm of celestial influence to one of celestial inhabitation. Although these trends are regarded as consequences of Copernican cosmology, and hallmarks of a modern world view, they are usually addressed separately in the historical literature. Unlike others, this book takes a broad approach that examines the relationship of the two. From Influence to Inhabitation will benefit both historians of astrology and historians of the extraterrestrial life debate, an audience which includes researchers and advanced students studying the history and philosophy of astrobiology. It will also appeal to historians of natural philosophy, science, astronomy and theology in the early modern period.
The proceedings of the 2nd SOHO Workshop published in this volume provide a concise overview of the most relevant aspects of mass supply and flows in the solar corona, focusing on: fine scale structures; loops and prominences; streamers; and coronal holes and solar wind. Each topic is introduced by three reviews - the first giving a summary of the status of relevant observations, the second illustrating the status of related theoretical work, and the third summarizing advances in the field to be expected as a result of future SOHO observations. The book also includes a number of specialized contributions. This volume aims to create a general awareness of the opportunities offered by SOHO, in addition to providing a basis for developing collaborative projects. It should also provide scientists already active in the field with easy access to information about future SOHO activities, while young researchers can learn about those topics which are currently regarded as being most relevant in this rapidly evolving discipline.
An authoritative introduction to the fascinating topic of archaeoastronomy—ancient peoples' understanding and use of the skies. Ancient Astronomy: An Encyclopedia of Cosmologies and Myth draws on archaeological evidence and oral traditions to reveal how prehistoric humans perceived the skies and celestial phenomena. With over 200 entries, it offers a number of ways to approach ancient astronomy, from key examples and case studies worldwide (Stonehenge; Mexican and Egyptian pyramids; Chaco Canyon, New Mexico; the Nazca lines in Peru) to general themes (cosmologies, calendars, ancient ideas of space and time, origin myths), to fundamental concepts and methods (how the sky has changed over the centuries, how to survey a site), and to the field's most frequently asked questions (How did ancient peoples navigate the ocean using the stars? How does astrology relate to ancient astronomy? Can ancient sites be dated astronomically?) By revealing the astronomical significance of some of the world's most famous ancient landmarks and enduring myths and by showing how different themes and concepts are connected, Ancient Astronomy: An Encyclopedia of Cosmologies and Myth brings a unique authoritative perspective to an area too often left to speculation and sensationalism.
In June of 1996, at the seaside resort of Guaruja, Brazil, a renowned group of researchers in space and astrophysical plasmas met to provide a forum on advanced topics on astrophysical and space plasmas at a school consisting of some 60 students and teachers, mainly from Brazil and Argentina, but also from all the other parts of the globe. The purpose was to provide an update on the latest theories, observations, and simulations of space-astrophysical plasma phenomena. The topics covered included: space plasma mechanisms for particle acceleration, nonthermal emission in cosmic plasma, magnetohydrodynamic instabilities in solar, interstellar, and other cosmic objects, magnetic field line reconnection and merging, the nonlinear and often chaotic structure of astrophysical plasmas, and the advances in high performance supercomputing resources to replicate the observed phenomena. The lectures were presented by Professor Mark Birkinshaw of the Harvard-Smithsonian Center for Astrophysics and the University of Bristol; Dr Anthony Peratt, Los Alamos National Laboratory Scientific Advisor to the United States Department of Energy; Dr Dieter Biskamp of the Max Planck Institute for Plasma Physics, Garching, Germany; Professor Donald Melrose, Director, Centre for Theoretical Astrophysics, University of Sydney, Australia; Professor Abraham Chian of the National Institute for Space Research, Brazil; and Professor Nelson Fiedler-Ferrara of the University of Sao Paulo, Brazil. As summarized by Professor Reuven Opher, Institute of Astronomy and Geophysics, University of Sao Paulo, the advanced or interested student of space and astrophysical plasmas will find reference to nearly all modern aspects in the field of Plasma Astrophysics and Cosmology in the presented lectures.
This book presents a complete overview of what we know, and would like to know, about the evolution and structure of massive stars. The spectra of early-type stars are produced by elaborate model atmospheres enveloping the internal structure. The book should be of value to researchers into the evolution, structure and atmospheres of massive stars. The book is also appropriate for astrophysics courses at university level, where it can be used to get acquainted with the most recent observational data, modelling of the internal and atmospheric structure, and the refined development of single and binary evolution scenarios of massive stars.
Review: Review of the first edition: 'A fresh and exciting introduction to modern galactic physics on the grand scale, and of its connections to other broad domains of contemporary physics. Graduate students in particular, will appreciate the clarity of presentation.' Bruno Coppi, Massachusetts Institute of Technology Review of the first edition: 'This book fills a major need for a graduate-level, physically-based introduction to galaxies, and will be of a very wide appeal as a course text. The original approach leads to a rich physical intuition of real kinematical systems. A particular strength is the detailed analysis of the limitations of current methods and theories.' Gerry Gilmore, University of Cambridge Review of the first edition: 'Giuseppe Bertin's Dynamics of Galaxies is an elucidating account of a graduate course given by Bertin over the past two decades ... His] book is particularly useful for students interested in mathematical methods of galactic dynamics. Bertin's comparisons between galactic dynamics and plasma physics are also innovative and illustrative.' Debra Elmegreen, Physics Today
Many of the seven billion people who live on the earth look to either science or religion as the ultimate source of authority in their lives. But why must there be a conflict between the two? Why can't science and religion support each other? "The Unity of Truth" shows why and how it makes perfect sense for science and religion to be mutually supportive. Beginning with the accepted truths of modern science and the beliefs of traditional Christianity, authors Allen A. Sweet, C. Frances Sweet, and Fritz Jaensch use their diverse expertise to deliver a deeper level of understanding of the ways in which science and religion can coexist. Relying on a thorough knowledge of physics, theology, and mathematics, this study addresses the paradox of how God communicates with our material world without violating any of the laws of science. Individual chapters discuss some of the most popular quandaries associated with combining science and religion. In addition, it considers the beginning and end of our universe, the evolution of life, and the meaning of human emotions from the scientific and theological perspectives, thus pushing understanding to a higher plateau of wisdom. Rational and devoid of rhetoric, "The Unity of Truth" seeks to help resolve the ongoing battle between religion and science, delivering a thoughtful narrative designed to open minds and hearts.
Based on 3D smoothed particle hydrodynamics simulations performed with unprecedented high resolution, this book examines the giant impacts that dominate many planets' late accretion and evolution. The numerical methods developed are now publicly available, greatly facilitating future studies of planetary impacts in our solar system and exoplanetary systems. The book focuses on four main topics: (1) The development of new methods to construct initial conditions as well as a hydrodynamical simulation code to evolve them, using 1000 times more simulation particles than the previous standard. (2) The numerical convergence of giant impact simulations -- standard-resolution simulations fail to converge on even bulk properties like the post-impact rotation period. (3) The collision thought to have knocked over the planet Uranus causing it to spin on its side. (4) The erosion of atmospheres by giant impacts onto terrestrial planets, and the first full 3D simulations of collisions in this regime.
The present century has been a disappointing one for comets, but past centuries often featured spectacular, unforgettable comet shows that dominated the night (and even daytime) sky for months: comets that outshone Venus or even the Moon, whose spectacular tails stretched more than halfway across the sky or were weirdly split, and whose apparition was held responsible for everything from wars to unusually good wine vintages. Published to coincide with the first naked-eye appearance of Comet Hale-Bopp, perhaps our own "comet of the century", this book is a guide to comet facts and lore throughout history.
Beginning with the famous Olber's paradox, a number of cosmological paradoxes, such as the missing mass, dark energy, and the baryon-to-photon ratio, have been and are today the subject of many scientific controversies. The Big Bang model, anticipated by Lemaitre in 1927 and reformulated twenty years later by Gamow, Alpher and Herman, is one of the most spectacular successes in the entire history of physics. It remains today surrounded by considerable theoretical speculation without sufficient observational support. This book discusses such paradoxes in depth with physical and logical content and historical perspective, and has not much technical content in order to serve a wide audience.
This book traces the development of Kepler's ideas along with his unsteady wanderings in a world dominated by religious turmoil. Johannes Kepler, like Galileo, was a supporter of the Copernican heliocentric world model. From an early stage, his principal objective was to discover "the world behind the world", i.e. to identify the underlying order and the secrets that make the world function as it does: the hidden world harmony. Kepler was driven both by his religious belief and Greek mysticism, which he found in ancient mathematics. His urge to find a construct encompassing the harmony of every possible aspect of the world - including astronomy, geometry and music - is seen as a manifestation of a deep human desire to bring order to the apparent chaos surrounding our existence. This desire continues to this day as we search for a theory that will finally unify and harmonise the forces of nature.
This book provides the only critical edition and English translation of Mahmud al-Jaghmini's al-Mulakhkhas fi al-hay'a al-basita, the most widely circulated Arabic treatise on Ptolemaic astronomy ever written. Composed in the early 13th century, this introductory textbook played a crucial role in the teaching, dissemination, and institutional instruction of Islamic astronomy well into the 19th century (and beyond). Establishing the base text is a fundamental prerequisite for gaining insights into what was considered an elementary astronomical textbook in Islam and also for understanding the extensive commentary tradition that built upon it. Within this volume, the Mulakhkhas is situated within the broader context of the genre of literature termed 'ilm al-hay'a, which has become the subject of intensive research over the past 25 years. In so doing, it provides a survey of summary accounts of theoretical astronomy of Jaghmini's predecessors, both Ancient and Islamic, which could have served as potential sources for the Mulakhkhas. Jaghmini's dates (which until now remained unsettled) are established, and it is definitively shown that he composed not only the Mulakhkhas but also other scientific treatises, including the popular medical treatise al-Qanunca, during a period that has been deemed one of scientific decline and stagnation in Islamic lands. The book will be of particular interest to scholars engaged in the study of Islamic theoretical astronomy, but is accessible to a general readership interested in learning what constituted an introduction to Ptolemaic astronomy in Islamic lands. |
![]() ![]() You may like...
Teaching life skills in the Foundation…
Mariana Naude, Corinne Meier
Paperback
![]() R668 Discovery Miles 6 680
Competition Policy in Global Trading…
Clifford Jones, Mitsuo Matsushita
Hardcover
R6,534
Discovery Miles 65 340
Computational Thinking in Sound…
Gena R Greher, Jesse M. Heines
Hardcover
R4,162
Discovery Miles 41 620
Technology CAPS - Grade 7 Teacher's…
F. Clitheroe, A. Goosen, …
Paperback
R296
Discovery Miles 2 960
Goyder's EC Competition Law
Joanna Goyder, Albertina Albors-Llorens
Hardcover
R7,087
Discovery Miles 70 870
|