![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time
This volume shows how collective magnetic excitations determine most of the magnetic properties of itinerant electron magnets. Previous theories were mainly restricted to the Curie-Weiss law temperature dependence of magnetic susceptibilities. Based on the spin amplitude conservation idea including the zero-point fluctuation amplitude, this book shows that the entire temperature and magnetic field dependence of magnetization curves, even in the ground state, is determined by the effect of spin fluctuations. It also shows that the theoretical consequences are largely in agreement with many experimental observations. The readers will therefore gain a new comprehensive perspective of their unified understanding of itinerant electron magnetism.
This volume aims to make Stephen of Pisa and Antioch's work on the celestial sciences accessible to a wider readership, providing not just the text but a translation and introduction as well. The edition is based on the only known manuscript of the Liber Mamonis, MS Cambrai, Mediatheque d'Agglomeration, A 930. It is split into two parts: the first provides an extensive introduction to Stephen and his work, while the second features the edition and translation. A comprehensive glossary and collection of photographs of plates are also included.
The Study of Time XVI: Time's Urgency celebrates the 50th anniversary of the International Society for the Study of Time. It includes a keynote speech by renowned physicist Julian Barbour, a dialogue between British author David Mitchell, Katie Paterson and ISST's previous president Paul Harris. The volume is divided into dialogues and papers that directly address the issue of urgency and time scales from various disciplines. This book offers a unique perspective on the contemporary status of the interdisciplinary study of time. It will open new paths of inquiry for different approaches to the important issues of narrative structure and urgency. These are themes that are becoming increasingly relevant during our times. Contributors are Julian Barbour, Dennis Costa, Kerstin Cuhls, Ileana da Silva, Margaret K. Devinney, Sonia Front, Peter A. Hancock, Paul Harris, Rose Harris-Birtill, David Mitchell, Carlos Montemayor, Jo Alyson Parker, Katie Paterson, Walter Schweidler, Raji C. Steineck, Daniela Tan, Frederick Turner, Thomas P. Weissert, Marc Wolterbeek, and Barry Wood.
This book reviews the phenomenology displayed by relativistic jets as well as the most recent theoretical efforts to understand the physical mechanisms at their origin. Relativistic jets have been observed and studied in Active Galactic Nuclei (AGN) for about half a century and are believed to be fueled by accretion onto a supermassive black hole at the center of the host galaxy. Since the first discovery of relativistic jets associated with so-called "micro-quasars" much more recently, it has seemed clear that much of the physics governing the relativistic outflows in stellar X-ray binaries harboring black holes and in AGN must be common, but acting on very different spatial and temporal scales. With new observational and theoretical results piling up every day, this book attempts to synthesize a consistent, unified physical picture of the formation and disruption of jets in accreting black-hole systems. The chapters in this book offer overviews accessible not only to specialists but also to graduate students and astrophysicists working in other areas. Covered topics comprise Relativistic jets in stellar systems Launching of AGN jets Parsec-scale AGN jets Kiloparsec-scale AGN jets Black hole magnetospheres Theory of relativistic jets The structure and dynamics of the inner accretion disk The origin of the jet magnetic field X-ray observations, phenomenology, and connection with theory
Recent Issues and Advances in Astronomy explores the most important developments in astronomy over the last decade, including the results of recent investigations on extrasolar planetary systems, black holes, and the existence of water in space. Besides exploring the societal implications of recent developments, the book also addresses the philosophical questions raised by recent advances, such as whether or not we are alone in the universe. Other chapters offer biographies of prominent astronomers, discussions of important current investigations, summaries of astronomical funding and career statistics, and a glossary of terms. The book also provides an annotated listing of relevant organizations and bibliographies of print and nonprint information resources. The book is illustrated and extensively cross-referenced, and includes a detailed subject index. A special chapter comprises narratives written by four trained astronomers, each of whom describes the particular career path he or she has chosen, both inside and outside the field of astronomy itself.
In the past few years, general astronomical interest has concentrated on s- eral objects and phenomena where white dwarf stars play a key role. T Type Ia supernovae have been used as evidence to show that, in fact, Einstein did not make his greatest blunder when heallowedfor the possibility of a c- mological constant. Improvements in our knowledge of the Hubble parameter have revived interest in the use of white dwarf stars as a different typeofc- mochronometer to measuretheage of the Galaxy andthus set constraints on the age of the Universe. In roughly the same time period, there have been considerable advances in our understanding of white dwarf stars, both as i- lated stars in the ?eld and as members ofinteracting binary systems. Much of thisadvance has come from theavailabilityof spacecraftobservations from missions like HST T T, IU UE, ROSAT T, EXOSAT T, Chandra, ORFEUS, EUVE, HUT T T, and FUSE. The discovery of thousandsof new white dwarfs from a number oflarge surveys and thepotential of theSloan Digital SkySurvey have added impetus to the ?eld. Studies ofinteracting binaries such as classical novae, supersoft X-ray bi- ries, symbiotic variables, dwarf novae and nova-like objects have revealed the diff ferences between thethermal evolution of singleand close binary systems aswell as heightenedinterest in these systems as progenitors of the cosmol- ically important Type I supernovae. A more speculative question is whether classical novae can beunderstood well enough that theymight provide another kind of standard candle.
This book is about structural relations between phenomenological and neurophysiological aspects of consciousness and time. Focusing on auditory perception and making new and updated use of Leibniz and Husserl, it investigates the transition from unconscious to conscious states, especially with regard to the constitution of phenomenal time.
Understanding the stars is the bedrock of modern astrophysics. Stars are the source of life. The chemical enrichment of our Milky Way and of the Universe withallelementsheavierthanlithiumoriginatesintheinteriorsofstars.Stars arethe tracersofthe dynamics ofthe Universe,gravitationallyimplying much more than meets the eye. Stars ionize the interstellar medium and re-ionized the early intergalactic medium. Understanding stellar structure and evolution is fundamental. While stellar structure and evolution are understood in general terms, we lack important physical ingredients, despite extensive research during recent decades.Classicalspectroscopy,photometry,astrometryandinterferometryof stars have traditionally been used as observational constraints to deduce the internal stellar physics. Unfortunately, these types of observations only allow the tuning of the basic common physics laws under stellar conditions with relatively poor precision. The situation is even more worrisome for unknown aspects of the physics and dynamics in stars. These are usually dealt with by using parameterised descriptions of, e.g., the treatments of convection, rotation,angularmomentumtransport,theequationofstate,atomicdi?usion andsettlingofelements,magneto-hydrodynamicalprocesses,andmore.There is a dearth of observational constraints on these processes, thus solar values areoftenassignedtothem.Yetitishardtoimaginethatonesetofparameters is appropriate for the vast range of stars.
Many people assume that amateur stargazers must invest hundreds or even thousands of dollars in equipment before they can enjoy the wonders of the night sky. The truth is, though, that all you need is a simple pair of binoculars. This handy, easy-to-follow guide explains how to observe everything from the moon to meteor showers with binoculars and provides safety tips for viewing eclipses. It also includes separate sections for winter, spring, summer, and fall that give advice on what to look for and how to optimize your viewing. Ideal for budding astronomers of all ages, Binocular Stargazing is the perfect way to see the night sky through new eyes.
This volume offers a comprehensive and integrated overview of our present knowledge and understanding of Coronal Mass Ejections (CMEs) and their descendants, Interplanetary CMEs (ICMEs). It results from a series of workshops held between 2000 and 2004. An international team of about sixty experimenters involved e.g. in the SOHO, ULYSSES, VOYAGER, PIONEER, HELIOS, WIND, IMP, and ACE missions, ground observers, and theoreticians worked jointly on interpreting the observations and developing new models for CME initiations, development, and interplanetary propagation. with an up-to-date status of the current understanding of CMEs and ICMEs and their effects in the heliosphere, and also to serve the advanced graduate student with introductory material on this active field of research.
The goal of the Daniel Chalonge School on Astrofundamental Physics is to contribute to a theory of the universe (and particularly of the early universe) up to the marks, and at the scientific height of, the unprecedented accuracy, existent and expected, in the observational data. The impressive development of modern cosmology during the last decades is to a large extent due to its unification with elementary particle physics and quantum field theory. The cross-section between these fields has been increasing setting up Astrofundamental Physics. The early universe is an exceptional (theoretical and experimental) laboratory in this new discipline. This NATO Advanced Study Institute provided an up dated understanding, from a fundamental physics and deep point of view, of the progress and key issues in the early universe and the cosmic microwave background: theory and observations. The genuine interplay with large scale structure formation and dark matter problem were discussed. The central focus was placed on the cosmic microwave background. Emphasis was given to the precise inter-relation between fundamental physics and cosmology in these problems, both at the theoretical and experimental/observational levels, within a deep and well defined programme which provided in addition, a careful interdisciplinarity. Special sessions were devoted to high energy cosmic rays, neutrinos in astrophysics, and high energy astrophysics. Deep understanding, clarification, synthesis, careful interdisciplinarity within a fundamental physics framework, were the main goals of the course.
ESA's Venus Express Mission has monitored Venus since April 2006, and scientists worldwide have used mathematical models to investigate its atmosphere and model its circulation. This book summarizes recent work to explore and understand the climate of the planet through a research program under the auspices of the International Space Science Institute (ISSI) in Bern, Switzerland. Some of the unique elements that are discussed are the anomalies with Venus' surface temperature (the huge greenhouse effect causes the surface to rise to 460 DegreesC, without which would plummet as low as -40 DegreesC), its unusual lack of solar radiation (despite being closer to the Sun, Venus receives less solar radiation than Earth due to its dense cloud cover reflecting 76% back) and the juxtaposition of its atmosphere and planetary rotation (wind speeds can climb up to 200 m/s, much faster than Venus' sidereal day of 243 Earth-days).
At the beginning of the 20th century, Kristian Birkeland (1867-1917), a Norwegian scientist of insatiable curiosity, addressed questions that had vexed European scientists for centuries. Why do the northern lights appear overhead when the earth's magnetic field is disturbed? How are magnetic storms connected to disturbances on the sun? To answer these questions Birkeland interpreted his advance laboratory simulations and daring campaigns in the Arctic wilderness in the light of Maxwell's newly discovered laws of electricity and magnetism. Birkeland's ideas were dismissed for decades, only to be vindicated when satellites could fly above the earth's atmosphere.
An "intriguing and accessible" (Publishers Weekly) interpretation of the life of Galileo Galilei, one of history's greatest and most fascinating scientists, that sheds new light on his discoveries and how he was challenged by science deniers. "We really need this story now, because we're living through the next chapter of science denial" (Bill McKibben). Galileo's story may be more relevant today than ever before. At present, we face enormous crises-such as minimizing the dangers of climate change-because the science behind these threats is erroneously questioned or ignored. Galileo encountered this problem 400 years ago. His discoveries, based on careful observations and ingenious experiments, contradicted conventional wisdom and the teachings of the church at the time. Consequently, in a blatant assault on freedom of thought, his books were forbidden by church authorities. Astrophysicist and bestselling author Mario Livio draws on his own scientific expertise and uses his "gifts as a great storyteller" (The Washington Post) to provide a "refreshing perspective" (Booklist) into how Galileo reached his bold new conclusions about the cosmos and the laws of nature. A freethinker who followed the evidence wherever it led him, Galileo was one of the most significant figures behind the scientific revolution. He believed that every educated person should know science as well as literature, and insisted on reaching the widest audience possible, publishing his books in Italian rather than Latin. Galileo was put on trial with his life in the balance for refusing to renounce his scientific convictions. He remains a hero and inspiration to scientists and all of those who respect science-which, as Livio reminds us in this "admirably clear and concise" (The Times, London) book, remains threatened everyday.
The second edition of Electronic Imaging in Astronomy: Detectors and Instrumentation describes the remarkable developments that have taken place in astronomical detectors and instrumentation in recent years -- from the invention of the charge-coupled device (CCD) in 1970 to the current era of very large telescopes, such as the Keck 10-meter telescopes in Hawaii with their laser guide-star adaptive optics which rival the image quality of the Hubble Space Telescope. Authored by one of the world s foremost experts on the design and development of electronic imaging systems for astronomy, this book has been written on several levels to appeal to a broad readership. Mathematical expositions are controlled to encourage a wider audience, especially among the growing community of amateur astronomers who own small telescopes with CCD cameras. The book can be used at the college level for a one semester introductory course on modern astronomical detectors and instruments, and as a supplement for a practical or laboratory class. But it also provides the core of a one semester course on astronomical instrumentation for new graduate (PhD) students who may very soon be faced with using, or even building, electronic imaging systems. The book contains worked examples, problems & solutions, end-of-chapter references and a glossary."
This second volume of Frontiers articles contains a broad array of
fascinating topics. The first four
The joint NASA-ESA Cassini-Huygens mission to Saturn is the most ambitious planetary mission since the VEGA mission to Venus and Halley in 1985/86 and the Viking arbiters and landers to Mars in 1976. This volume describes the mission, the orbiter spacecraft, the Titan atmospheric probe and the mission design in articles written by its project scientists and engineering team. These are followed by five articles from each of the discipline working groups discussing the existing knowledge of the Saturnian system and their goals for the mission. Finally, each of the Huygens entry probe instrument teams describes their instruments and measurement objectives. These instruments include an atmospheric structure instrument, an aerosol pyrolyser, an imager/radiometer, a gas chromatograph, a surface science package and a radio science investigation. This book is of interest to all potential users of the Cassini-Huygens data, to those who wish to learn about the planned scientific return from the Cassini-Huygens mission and those curious about the processes occurring on this most fascinating planet.
A Nobel Prize-winning physicist explains what happened at the very beginning of the universe, and how we know, in this popular science classic. Our universe has been growing for nearly 14 billion years. But almost everything about it, from the elements that forged stars, planets, and lifeforms, to the fundamental forces of physics, can be traced back to what happened in just the first three minutes of its life. In this book, Nobel Laureate Steven Weinberg describes in wonderful detail what happened in these first three minutes. It is an exhilarating journey that begins with the Planck Epoch - the earliest period of time in the history of the universe - and goes through Einstein's Theory of Relativity, the Hubble Red Shift, and the detection of the Cosmic Microwave Background. These incredible discoveries all form the foundation for what we now understand as the "standard model" of the origin of the universe. The First Three Minutes examines not only what this model looks like, but also tells the exciting story of the bold thinkers who put it together. Clearly and accessibly written, The First Three Minutes is a modern-day classic, an unsurpassed explanation of where it is we really come from.
This volume documents recent developments that have advanced our understanding of the heating and cooling mechanisms in galaxies and galaxy clusters. Chapters detail results from multi-wavelength observations and advances in numerical hydrodynamical simulations. An additional section covers new research findings on feedback and self-regulatory mechanisms during cosmic structure formation in general and in galaxy formation in particular.
Impact cratering is an important geological process on all solid planetary bodies, and, in the case of Earth, may have had major climatic and biological effects. Most terrestrial impact craters have been erased or modified beyond recognition. However, major impacts throw ejecta over large areas of the Earth's surface. Recognition of these impact ejecta layers can help fill in the gaps in the terrestrial cratering record and at the same time provide direct correlation between major impacts and other geological events, such as climatic changes and mass extinctions. This book provides the first summary of known distal impact ejecta layers
This volume considers the role comets may have played in the origins and evolution of life. This is the only book dealing in depth with this subject. It is particularly relevant in light of recent investigations of Halley's comet, of new insights into organic synthesis in meteorites and comets, and of new results of numerical simulations of cometary orbits and impacts on Earth. The book is intended as a comprehensive review of current research.
Can we detect the moons of extrasolar planets? For two decades, astronomers have made enormous progress in the detection and characterisation of exoplanetary systems but the identification of an "exomoon" is notably absent. In this thesis, David Kipping shows how transiting planets may be used to infer the presence of exomoons through deviations in the time and duration of the planetary eclipses. A detailed account of the transit model, potential distortions, and timing techniques is covered before the analytic forms for the timing variations are derived. It is shown that habitable-zone exomoons above 0.2 Earth-masses are detectable with the Kepler space telescope using these new timing techniques.
Comets are small bodies, but of great cosmic relevance. Given its pristine nature, they may preserve valuable and unique information on thechemical and physical processes that took place in theearly solar system, and that may be occurring in the formation of other planetary systems. They might have even played a very important role in the origin of life on Earth. Beyond that, since ancient times comets have inspired awe, superstition, and also curiosity anddebate. Their sudden apparitions challenged the long-held view of the immutability of the heavens, which triggered a long debate on whether comets had a heavenly or terrestrial nature. Therefore, comets have a prominent role in the history of scienti?cthought, that goes back to the most ancient civilizations. The last apparition of comet Halley in 1986 was a landmark since it arouse a great expectation in the scienti?c community and in the public at large. For the ?rst time, a ?otilla of spacecrafts visited a comet. Agreat number of popular and technical books were written on Halley, and comets in general, around the mid-eighties. The interest in comets never subsided after Halley's passage which is re?ected in the large volume of printed material on these bodies. I have taken the challenge to write a new book on comets that summarizes most of the recent advances on thesubject, including my own workdeveloped during the last 25 years. |
You may like...
My Kind is Doof of Hardhorend - Wat Nou?
Karina Jooste-Van Aarde
Paperback
HowExpert Guide to Hearing Loss - 101…
Howexpert, Christine Anderson
Hardcover
R729
Discovery Miles 7 290
Bioinformatics in Agriculture - Next…
Pradeep Sharma, Dinesh Yadav, …
Paperback
R3,038
Discovery Miles 30 380
Collaborative Genomics Projects: A…
Margi Sheth, Julia Zhang, …
Paperback
R1,628
Discovery Miles 16 280
Prenatal Genetic Counseling - Practical…
Sam Riedijk, Karin E.M. Diderich
Paperback
R3,283
Discovery Miles 32 830
|