![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Astronomy, space & time
Recent advances in observational and theoretical efforts in understanding the nature of cataclysmic variables had reached such maturity that there existed a strong, shared feeling among the workers in this field that an international colloquium sponsored by the International Astronomical Union would be timely. To be more specific, this was due primarily to the accumulation of the new data from satellite observatories, such as the International Ultraviolet Observatory (IUE) and EXOSAT, as well as ground-based optical and radio telescopes, and the advances in modeling the putative accretion disks and the thermo-nuclear run-away phenomena in the vinicity of the white dwarf stars in cataclysmic variables. A series of workshops on this subject held in North America over the past several years and that held in Europe in 1985 had all contributed to the advances in our knowledge that led to IAU Colloguium No. 93, held in Bamberg from the 16th to 19th of June 1986. In all, 157 astronomers from 27 countries participated in this conference. Judging from the papers presented, both invited and contributed, and from the enthusiasm seen in discussions, the meeting was indeed a success.
This book describes the basic concepts of spacecraft operations for both manned and unmanned missions. The first part of the book provides a brief overview of the space segment. The next four parts deal with the classic areas of space flight operations: mission operations, communications and infrastructure, the flight dynamics system, and the mission planning system. This is followed by a part describing the operational tasks of the various subsystems of a classical satellite in Earth orbit. The last part describes the special requirements of other mission types due to the presence of astronauts, the approach of a satellite to another target satellite, or leaving Earth orbit in interplanetary missions and landing on other planets and moons. The 2nd edition is published seven years after the first edition. It contains four new chapters on flight procedures, the human factors, ground station operation, and software and systems. In addition, several chapters have been extensively expanded. The entire book has been brought up to date and the language has been revised. This book is based on the "Spacecraft Operations Course" held at the German Space Operations Center. However, the target audience of this book is not only the participants of the course, but also students of technical and scientific courses, as well as technically interested people who want to gain a deeper understanding of spacecraft operations.
The mystery of the diffuse interstellar bands has been variously a curiosity, a co nundrum, and a nuisance for astronomers in the seven decades since the features were first noticed, but recently they have become a forefront issue in astrophysics. Ever since Paul Merrill, in a series of papers starting in 1934, pointed out the interstellar and unidentified nature of the bands, a Who's Who of twentieth century astronomers have tried their hands at solving the problem of identifying the carriers. Henry Norris Russell, Pol Swings, Otto Struve, Paul Ledoux, W. W. Morgan, Walter Adams, Jesse Greenstein, Lawrence Aller, and Gerhard Herzberg all briefly entered the stage, only to move on quickly to other problems where the chances for progress appeared more realistic. In more recent times a number of equally prominent scientists have pursued the bands, but generally only as a sideline to their real astronomical research. But in the past decade, and particularly in the past three years, the view of the search for the diffuse band absorbers as an interesting but perhaps quixotic quest has changed. Today there are several astronomers, as well as laboratory chemists, who are devoting substantial research time and resources to the problem and, as perhaps the most reliable indicator of the newly elevated status of research in this field, some research grants have now been awarded for the study of the bands."
In the recent years, space-based observation methods have led to a subst- tially improved understanding of Earth system. Geodesy and geophysics are contributing to this development by measuring the temporal and spatial va- ations of the Earth's shape, gravity ?eld, and magnetic ?eld, as well as at- sphere density. In the frame of the GermanR&D programmeGEOTECHNO- LOGIEN,researchprojectshavebeen launchedin2002relatedto the satellite missions CHAMP, GRACE and ESA's planned mission GOCE, to comp- mentary terrestrial and airborne sensor systems and to consistent and stable high-precision global reference systems for satellite and other techniques. In the initial 3-year phase of the research programme (2002-2004), new gravity ?eld models have been computed from CHAMP and GRACE data which outperform previous models in accuracy by up to two orders of m- nitude for the long and medium wavelengths. A special highlight is the - termination of seasonal gravity variations caused by changes in continental water masses. For GOCE, to be launched in 2006, new gravity ?eld analysis methods are under development and integrated into the ESA processing s- tem. 200,000 GPS radio occultation pro?les, observed by CHAMP, have been processed on an operational basis. They represent new and excellent inf- mation on atmospheric refractivity, temperature and water vapor. These new developments require geodetic space techniques (such as VLBI, SLR, LLR, GPS) to be combined and synchronized as if being one global instrument.
, This is the updated, widely revised, restructured and expanded
third edition of Lena et al.'s successful work Observational
Astrophysics. It presents a synthesis on tools and methods of
observational astrophysics of the early 21st century. Written
specifically for astrophysicists and graduate students, this
textbook focuses on fundamental and sometimes practical limitations
on the ultimate performance that an astronomical system may reach,
rather than presenting particular systems in detail.
Outstanding progress in near-infrared detection technology and in real-time image processing has led astronomers to start undertaking all-sky surveys in the 1--2 mum range (project DENIS in Europe and 2MASS in the U.S.A.), surveys which will have a considerable impact in various areas of astronomy. This book gathers the contributions of more than 80 specialists involved in fields of interest as different as low mass stars, late stages of stellar evolution, star formation, stellar populations of the Galaxy and the Magellanic Clouds, the local structure of the Universe, and observational cosmology. It describes the impact on these fields of the exhaustive data bases and catalogs of stars and galaxies that these surveys will provide. The considerable interest of these documents for the future of infrared space and ground-based projects and the complementarity with other currently ongoing or planned surveys in other spectral ranges are emphasized.
Prominences are amazing objects of great beauty whose formation, basic structure and eruption represent one of the basic unsolved problems in Solar Physics. It is now 14 years since the last book on prominences appeared (Tandberg-Hanssen, 1974), during which time much progress in our knowledge of the physics of prominences has been made, and so the time is ripe for a new text book which it is hoped will be a helpful summary of the subject for students, postdocs and solar researchers. Indeed, the last few years has seen an upsurge in interest in prominences due to high resolution ground-and space-based observations and advances in theory. For example, an IAU colloquium was held in Oslo (Jensen et al, 1978), a Solar Maximum Mission Workshop took place at Goddard Space Right Center (poland, 1986), an IAU Colloquium is planned in Yugoslavia in September 1989 in prominences and it is expected that the SOHO satellite will be a further stimulus to prominence research. In November 1987 a Workshop on the Dynamics and Structure of Solar Prominences was held in Palma Mallorca at the invitation of Jose Luis Ballester with the aim of bringing observers and theorists together and having plenty of time for in-depth discussions of the basic physics of promi nences."
Adriaan Blaauw; Emeritus Professor of Astronomy at the Universities of Groningen and Leiden, former Directo.r of the Kapteyn Laboratory and of the European Southern Observatory, celebrated his 70th anniversary on 12 April 1984. To mark this event, an international Symposium was con- vened on the subject "Birth and Evolution of Massive Stars and Stellar Groups", a subject which has played the leading role in Blaauw's scien- tific research. The present volume contains the Scientific Proceedings of that Symposium. The meeting was organized by a Committee consisting of: W.H.W.M. Boland (Secretary), W.N. Brouw, W.B. Burton, E.P.J. van den Heuvel, H. van der Laan and H. van Woerden (Chairman). Together, these six persons represented the Executive Committees of the Netherlands Foundation for Astronomical Research (ASTRON) and the Netherlands Foundation for Radio Astronomy (RZM), two organizations in which Blaauw has held key offices. The scientific program was planned in full consultation with Adri- aan Blaauw himself. Only section 5, "A profile of Adriaan Blaauw", was kept secret to him. The other four sections: Structure of star-forming regions, Stellar content of young groups, Evolution of massive stars, and Extragalactic perspective on star formation, each represent an im- portant aspect of the overall theme of the Symposium. The program in- cluded 6 major review papers, 18 invited papers, 17 contributed papers, some of which were given as posters, and ample time for discussion.
The Third Microquasar Workshop (or the 'Fifth' Workshop on Galactic Relativ istic Jet Sources), was held in Granada, Andalucia (Spain) on 11-13 September 2000. The aim of this workshop in Granada, following the previous Microquasar Workshops in Greenbelt (1997) and Paris (1998) and the Workshops on galactic sources with relativistic jets in Jodrell Bank (1996) and Milton Keynes (1998), was to focus on the theoretical and observational aspects of microquasars. The study of microquasars, the sources in our Galaxy displaying powerful re lativistic jets, is a rapidly advancing field in astrophysics. The new instrumentation on ground (MERLIN, SCUBA, VLA, VLT) and aboard satellites (ASCA, BSAX, ISO, IXAE and RXTE) has provided important results, and much more is expected to come from Chandra and XMM-Newton. In the further future, powerful instru mentation will come online in the sub-mm (ALMA) and gamma-rays (INTEG RAL), extending our coverage to important regions for the study of microquasars. Energy transport via relativistic jets is one of the most important physical mechan isms taking place in compact objects. Large efforts have been devoted to properly understand the disk-jet connection, and even the effects of rotation or magnetic fields. Several new important advances have been made recently, both from the point of view of the theoretical treatment of jets and the different new observational tests."
The aim of this volume of scientific essays is twofold. On the one hand, by remembering the scientific figure of Eduardo R. Caianiello, it aims at focusing on his outstanding contributions - from theoretical physics to cybernetics - which after so many years still represent occasion of innovative paths to be fruitfully followed. It must be stressed the contribution that his interdisciplinary methodology can still be of great help in affording and solving present day complex problems. On the other hand, it aims at pinpointing with the help of the scientists contributing to the volume - some crucial problems in present day research in the fields of interest of Eduardo Caianiello and which are still among the main lines of investigation of some of the Institutes founded by Eduardo (Istituto di Cibernetica del CNR, IIAS, etc).
This book represents the proceedings from the NATO sponsored Advanced Research Workshop entitled "Observational Tests of Inflation" held at the University of Durham, England on the 10th-14th December, 1990. In recent years, the cosmological inflation model has drawn together the worlds of particle physics, theoretical cosmology and observational astronomy. The aim of the workshop was to bring together experts in all of these fields to discuss the current status of the inflation theory and its observational predictions. The simplest inflation model makes clear predictions which are testable by astronomical observation. Foremost is the prediction that the cosmological density parameter, no, should have a value negligibly different from the critical, Einstein-de Sitter value of 00=1. The other main prediction is that the spectrum of primordial density fluctuations should be Gaussian and take the Harrison-Zeldovich form. The prediction that n =l, in patticular, leads to several important consequences o for cosmology. Firstly, there is the apparent contradiction with the limits on baryon density from Big Bang nucleosynthesis which has led to the common conjecture that weakly interacting particles rather than baryons may form the dominant mass constituent of the Universe. Secondly, with n =l, the age of the Universe is uncomfortably short if o the Hubble constant and the ages of the oldest star clusters lie within their currently believed limits.
This book contains a set of articles based on a session of the annual meeting of the American Association for the Advancement of Science held in San Francisco in February, 1974. The reason for the meeting arose from the need to communicate to the largest possible scientific community the dramatic advances which have been made in recent years in the understanding of collapsed objects: neutron stars and black holes. Thanks to an unprecedented resonance between X-ray, y-ray, radio and optical astronomy and important new theoretical developments in relativistic astro physics, a new deep understanding has been acquired of the physical processes oc curring in the late stages of evolution of stars. This knowledge may be one of the greatest conquests of man's understanding of nature in this century. This book aims to give an essential and up-to-date view in this field. The analysis of the physics and astrophysics of neutron stars and black holes is here attacked from both theoretical and experimental points of view. In the experimental field we range from the reviews and catalogues of galactic X-ray sources (R. Gursky and E. Schreier) and pulsars (E. Groth) to the observations of the optical counter part of X-ray sources (P. Boynton) to finally the recently discovered gamma-ray bursts (I. Strong) and pulse astronomy R. B. Partridge)."
The main purpose of this book is to introduce the reader to the subject of solar activity and the connection with Earth's climate. It commences with a brief review of the historical progress on the understanding of the solar-terrestrial connection and moves on to an objective scrutiny of the various hypothesis. The text focuses on how knowledge about the solar cycle and Earth's climate is obtained. It includes discussion of observations, methods and the physics involved, with the necessary statistics and analysis also provided, including an examination of empirical relations between sunspots and the Earth's climate. The author reviews plausible physical mechanisms involved in any links between the solar cycle and the Earth's climate, emphasizing the use of established scientific methods for testing hypothesized relationships.
This book addresses supergravity and supergravity-motivated effective field theories in the context of cosmological model building. Extracting information about quintessence from string theory has attracted much attention in the past few years. The question became more urgent very recently after the possibility of obtaining de Sitter space was called into question. Therefore, there is an interesting debate as to whether de Sitter space or, even, quintessence can be derived from a fundamental theory, string theory or otherwise. This is a very active field of research, and the topics covered in the book render this work very timely. Throughout the book, special care has been taken in demonstrating historical relevance of the field and describing the set of open questions motivating the state-of-the-art research. The first few chapters in each part provide a detailed review of standard perturbative and non-perturbative techniques in supergravity model building, as a way to prepare the reader for the more technical and original subsequent chapters. These early chapters also represent a self-contained review that would be useful for anyone planning to enter this challenging area of study. The subsequent chapters detail research in supergravity-motivated effective field theories, in the first part, and supergravity models, in the second part. One of the important conclusions in this book is that modelling quintessence in perturbative string theory is at least as challenging as modelling de Sitter, placing the wider programme on a collision course with observations.
This volume contains the papers and discussions at IAU Colloquium No. 21 on Variable Stars in Globular Clusters and in Related Systems held in Toronto on the 29th, 30th and 31st August 1972. It was the intention of the organizers that this meeting should honour the life long work in this field of Professor Helen Sawyer Hogg. She has been continuously active in observational research on variables in globular clusters for 46 years and her catalogues and bibliographies as well as her research papers, review articles and IA U reports as chairman of the committee on variable stars in clusters are of fundamental importance to all workers in this field. The scope of the colloquium covered both observational and theoretical aspects of the problem, including the relationship of variables to non-variable cluster members, the position of the variables in the HR diagram and their importance for problems of stellar evolution, empirical data on the variables, periods and period changes, and the relevant parts of pulsation theory. The meeting was particularly successful in bringing together observers and theorists. It will have achieved its object if it has shown both observers and theorists which are the problems most suitable for attack at the present time. The meeting clearly demonstrated the great importance of research on variables in globular clusters and related systems for our understanding both of stellar evolution and stellar pulsation.
A brief guide to the real science of interstellar travel With known exoplanets now numbering in the thousands and initiatives like 100 Year Starship and Breakthrough Starshot advancing the idea of interstellar travel, the age-old dream of venturing forth into the cosmos and perhaps even colonizing distant worlds may one day become a reality. A Traveler's Guide to the Stars reveals how. Les Johnson takes you on a thrilling tour of the physics and technologies that may enable us to reach the stars. He discusses the latest exoplanet discoveries, promising interstellar missions on the not-so-distant horizon, and exciting new developments in space propulsion, power, robotics, communications, and more. But interstellar travel will not be easy, and it is not for the faint of heart. Johnson describes the harsh and forbidding expanse of space that awaits us, and he addresses the daunting challenges-both human and technological-that we will need to overcome in order to realize tomorrow's possibilities. A Traveler's Guide to the Stars is your passport to the next great frontier of human discovery, providing a rare inside look at the remarkable breakthroughs in science and technology that will help tomorrow's space travelers chart a course for the stars.
"Revolution and Pedagogy" explores the tensions between and within the processes of revolutionary pedagogical change and continuity. Focusing on those enacting pedagogical contexts, E. Thomas Ewing's collection provides an innovative and sophisticated exploration of complex directions and forces. These revolutions include the struggle for independence in the Philippines, the Russian revolution that led to communist Soviet Union, the Egyptian campaigns against British colonial authority, the development of Kurdish national identity in the context of Turkey's modernization, radical and reformist educational movements in Western Europe and the Americas, the Palestinian struggle for self-determination, and the contemporary debate over national and religious identity in India. "Revolution and Pedagogy" examines conventional topics such as school policies and curriculum content, as well as more non-traditional pedagogies such as public celebrations of holidays, participation in international exchange programs, and the incarceration of political activists. The geographically diverse contributors from a wide range of disciplinary approaches produce interdisciplinary and transnational perspectives on education and revolution.
The aim of this Advanced Study Institute was to give an account on the most recent results obtained in solar research. Bucharest was chosen to host it, because the capital city of Romania was located right in the middle of the totality path of the last eclipse of the millennium, on 11th August 1999; furthermore the phenomenon was close to reach there its longest duration: 2m 23s. Such a total eclipse is not only a very spectacular event which draws the crowds: to astronomers, solar eclipses still offer the best conditions for observing the lower part of the corona. The Sun plays a crucial role in our very existence. It was responsible for the formation of the Earth, and rendered this planet fit to host living beings, providing the right amount of heat, and this for a long enough span of time. Quite understandably, it has always been a prime target of human curiosity, and more recently one of scientific investigation. During the last century, it was realized that the Sun is a star like billions of others; we learned since that it draws its energy from the nuclear fusion of hydrogen, and we are now able to estimate its age and life expectancy.
Introd uction The problem of integrability or nonintegrability of dynamical systems is one of the central problems of mathematics and mechanics. Integrable cases are of considerable interest, since, by examining them, one can study general laws of behavior for the solutions of these systems. The classical approach to studying dynamical systems assumes a search for explicit formulas for the solutions of motion equations and then their analysis. This approach stimulated the development of new areas in mathematics, such as the al gebraic integration and the theory of elliptic and theta functions. In spite of this, the qualitative methods of studying dynamical systems are much actual. It was Poincare who founded the qualitative theory of differential equa tions. Poincare, working out qualitative methods, studied the problems of celestial mechanics and cosmology in which it is especially important to understand the behavior of trajectories of motion, i.e., the solutions of differential equations at infinite time. Namely, beginning from Poincare systems of equations (in connection with the study of the problems of ce lestial mechanics), the right-hand parts of which don't depend explicitly on the independent variable of time, i.e., dynamical systems, are studied. |
![]() ![]() You may like...
Statistics for Management and Economics
Gerald Keller, Nicoleta Gaciu
Paperback
Proceedings of the Fourth International…
Mohan S., S. Sureshkumar
Hardcover
R4,485
Discovery Miles 44 850
Recent Advances in Structural Joints and…
Liyong Tong, C. Soutis
Hardcover
R4,378
Discovery Miles 43 780
Metaheuristics for Resource Deployment…
Shuxin Ding, Chen Chen, …
Hardcover
R2,825
Discovery Miles 28 250
|