![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time
This book gathers selected and expanded contributions presented at the 5th Symposium on Space Optical Instruments and Applications, which was held in Beijing, China, on September 5-7, 2018. This conference series is organized by the Sino-Holland Space Optical Instruments Laboratory, a cooperative platform between China and the Netherlands. The symposium focused on key technological problems regarding optical instruments and their applications in a space context. It covered the latest developments, experiments and results on the theory, instrumentation and applications of space optics. The book is split into five main sections: The first covers optical remote sensing system design, the second focuses on advanced optical system design, and the third addresses remote sensor calibration and measurement. Remote sensing data processing and information extraction are then presented, followed by a final section on remote sensing data applications.
This book offers a comprehensive introduction in to the various theories of colour and how they developed over the centuries and millennia. As colour is the perception of light by our brains, the book captures not only the physical phenomena but also psychological and philosophical aspects of colours. It starts with ancient studies of Greek philosophers and their insights into light and mirrors, then reviews the theory of colors in the middle ages in Europe and Middle East. The last big part of the book explains the theories of colours by modern scientists and philosophers, starting with Isaac Newton and ending colour schemes of modern digital pictures.
The now recognized extensive existence of life on earth very shortly after the destructive bombardment of the earth's surface by early solar system debris has stimulated inquiry into possible exogenous sources of prebiotic molecules from space as well as intensified studies of the early earth's atmosphere. The chapters in this book cover the possible sources of prebiotic molecules and avenues by which life could have evolved, starting from the birth and evolution of the solar system. The relevance of the classic experiments by Stanley Miller on the formation of life's building blocks on an early earth is reexamined. The role of chemistry in space is covered by chapters on interstellar dust, and meteorites to which experimental as well as theoretical investigations have been directed. In various chapters the existence of amino acids as well as other prebiotic molecules in meteorites is clearly established and inferred for interstellar dust and comets. Theories of molecular synthesis in the solar nebula are considered. Extensive coverage is given to the physical conditions and to prebiotic systems on the early earth. Possible pathways to life on an early Mars and the possible messages to be obtained by space exploration are discussed. Questions of effects of clays and of chirality on early chemical evolution are discussed. Recent ideas on the RNA world as the precursor to life are reviewed. The open-endedness of the study of life's origins and the need to investigate whether the prebiotic building blocks formed in outer space or on the earth is emphasized. A good deal of the book is suitable to graduate students.
This comprehensive and unique reference work on astro-tomography is based on expanded and suitably edited contributions to the 1st International Workshop on Astro-tomography. The focus is on studying indirect imaging and subsequent reconstruction techniques with applications in all areas of observational astronomy, astrophysics and cosmology. Detailed subject and object indexes, together with a list of useful resources on the Internet, will help the reader to use this book in a most efficient way.
This book is aimed at students making the transition from a first course on general relativity to a specialized subfield. It presents a variety of topics under the general headings of gravitational waves in vacuo and in a cosmological setting, equations of motion, and black holes, all having a clear physical relevance and a strong emphasis on space-time geometry. Each chapter could be used as a basis for an early postgraduate project for those who are exploring avenues into research in general relativity and who have already accumulated the required technical knowledge. The presentation of each chapter is research monograph style, rather than text book style, in order to impress on interested students the need to present their research in a clear and concise format. Students with advanced preparation in general relativity theory might find a treasure trove here.
The Physics of the Early Universe is an edited and expanded version of the lectures given at a recent summer school of the same name. Its aim is to present an advanced multi-authored textbook that meets the needs of both postgraduate students and young researchers interested in, or already working on, problems in cosmology and general relativity, with emphasis on the early universe. A particularly strong feature of the present work is the constructive-critical approach to the present mainstream theories, the careful assessment of some alternative approaches, and the overall balance between theoretical and observational considerations. As such, this book will also benefit experienced scientists and nonspecialists from related areas of research.
This book is an outgrowth of the notes made for the semester lectures on 'Problems of Extragalactic Astronomy' given almost annually during two decades at the Ob- servatorio Astronomico of the Universidad de Cordoba. Shorter versions were also given at La Plata, Santiago de Chile, Sao Paulo, Rio de Janeiro and Paraiba. E. Scalise made a Portuguese language version of the notes and encouraged me to publish them; although my friend J. Kleczek is to be blamed for the idea of this book. Not every subject on Extragalactic Astronomy has been touched in this book: instead I have followed those which interested me during 25 years of professional practice in this part of the world. I acknowledge helpful suggestions from M. Pastoriza and G. Carranza, the com- prehension of Director L. Milone, and the collaboration of the staff of the Observa- tory in Cordoba. R. Tschamler's humor and wit made light the task of producing the English version and M. Pizarro's devotedness produced the edited MS. To both of them I am in deep gratitude. "A book is published out of necessity, otherwise the author would spend his entire life polishing the originals" was the answer given by J. L. Borges to an inquisi- tive journalist. These words explain why this book is so different from the lecture notes, and also from the book I was hoping for. I thank B. McCormac and the D. Reidel Publ. Co. for my salvation from Borges' inferno.
This book introduces "Astrostatistics" as a subject in its own right with rewarding examples, including work by the authors with galaxy and Gamma Ray Burst data to engage the reader. This includes a comprehensive blending of Astrophysics and Statistics. The first chapter's coverage of preliminary concepts and terminologies for astronomical phenomenon will appeal to both Statistics and Astrophysics readers as helpful context. Statistics concepts covered in the book provide a methodological framework. A unique feature is the inclusion of different possible sources of astronomical data, as well as software packages for converting the raw data into appropriate forms for data analysis. Readers can then use the appropriate statistical packages for their particular data analysis needs. The ideas of statistical inference discussed in the book help readers determine how to apply statistical tests. The authors cover different applications of statistical techniques already developed or specifically introduced for astronomical problems, including regression techniques, along with their usefulness for data set problems related to size and dimension. Analysis of missing data is an important part of the book because of its significance for work with astronomical data. Both existing and new techniques related to dimension reduction and clustering are illustrated through examples. There is detailed coverage of applications useful for classification, discrimination, data mining and time series analysis. Later chapters explain simulation techniques useful for the development of physical models where it is difficult or impossible to collect data. Finally, coverage of the many R programs for techniques discussed makes this book a fantastic practical reference. Readers may apply what they learn directly to their data sets in addition to the data sets included by the authors.
Based on a Simons Symposium held in 2018, the proceedings in this volume focus on the theoretical, numerical, and observational quest for dark matter in the universe. Present ground-based and satellite searches have so far severely constrained the long-proposed theoretical models for dark matter. Nevertheless, there is continuously growing astrophysical and cosmological evidence for its existence. To address present and future developments in the field, novel ideas, theories, and approaches are called for. The symposium gathered together a new generation of experts pursuing innovative, more complex theories of dark matter than previously considered.This is being done hand in hand with experts in numerical astrophysical simulations and observational techniques-all paramount for deciphering the nature of dark matter. The proceedings volume provides coverage of the most advanced stage of understanding dark matter in various new frameworks. The collection will be useful for graduate students, postdocs, and investigators interested in cutting-edge research on one of the biggest mysteries of our universe.
Novel instruments for high-precision imaging polarimetry have opened new possibilities, not only for diagnostics of magnetic fields, but also for exploring effects in radiative scattering, atomic physics, spectral line formation and radiative transfer. The observational advances have stimulated various theoretical developments, for instance in vector radiative transfer and techniques for inverting polarized line profiles. The present volume gives a comprehensive and up-to-date account of this rapidly evolving and interdisciplinary field of science. It is based on the oral presentations given at the 2nd International Workshop on Solar Polarization held in Bangalore, India, in October 1998.
Analysis of the orbital motion of the Earth, the Moon and other
planets and their satellites led to the discovery that all bodies
in the Solar System are moving with the first cosmic velocity of
their proto parents. The mean orbital velocity of each planet is
equal to the first cosmic velocity of the Protosun, the radius of
which is equal to the semi-major axis of the planet s orbit. The
same applies for the planets satellites. All the small planets,
comets, other bodies and the Sun itself follow this law, a finding
that has also been proven by astronomical observations. The
theoretical solutions based on the Jacobi dynamics explain the
process of the system creation and decay, as well as the nature of
Kepler s laws.
Angelo Secchi was a key figure in 19th century science. An Italian Jesuit and scientist, he helped lead the transition from astronomy to astrophysics and left a lasting legacy in the field. Secchi’s spectral classification of stars was a milestone that paved the way for modern astronomical research. He was also a founder of modern meteorology and an innovator in the design and development of new instruments and methods across disciplines.This contributed volume collects together reviews from an international group of historians, scientists and scholars representing the multiple disciplines where Secchi made significant contributions during his remarkable career. It analyzes both his famous and lesser known pioneering efforts with equal vigor, providing a well-rounded narrative of his life’s work. Beyond his scientific and technological work, his role as a Jesuit priest in Rome during the turbulent years of the mid 19th century is also described and placed in the context of his scientific and civic activities.
This book views Mercury as a whole in the context of its environment. It illustrates what we know and what we need to know, and why understanding Mercury is so crucial to our understanding of solar system origin and current processes on Earth. The book describes our current state of knowledge for Mercury and interactions between interior, exterior, and space environment which are highly dynamic and thus critical to understanding Mercury as a system.
Bestselling author and acclaimed physicist Lawrence Krauss offers a
paradigm-shifting view of how everything that exists came to be in
the first place.
This revised and updated comprehensive introduction to astronomical objects and phenomena applies basic physical principles to a variety of situations. Students learn how to relate everyday physics to the astronomical world with the help of useful equations, chapter summaries, worked examples and end-of-chapter problem sets. It will be suitable for undergraduate students taking a first course in astronomy, and assumes a basic knowledge of physics with calculus.
In order to outline possible future directions in galaxy research, this book wants to be a short stopover, a moment of self-reflection of the past century of achievements in this area. Since the pioneering years of galaxy research in the early 20th century, the research on galaxies has seen a relentless advance directly connected to the parallel exponential growth of new technologies. Through a series of interviews with distinguished astronomers the editors provide a snapshot of the achievements obtained in understanding galaxies. While many initial questions about their nature have been addressed, many are still open and require new efforts to achieve a solution. The discussions may reveal paradigms worthwhile revisiting. With the help of some of those scientists who have contributed to it, the editors sketch the history of this scientific journey and ask them for inspirations for future directions of galaxy research.
This book assembles for the first time in a single text the full range of astronomical and engineering principles used in the design and construction of large telescopes. It aims to cover all aspects of the field, from the fundamentals of astronomical observation, to optics, control systems, and structural, mechanical, and thermal engineering, as well as such specialized topics as site selection and program management. The book is the result of the collaboration of many leading astronomers, engineers, and project managers. Their contributions have been edited to provide a consistent approach and treatment: for example, ground- and space-based telescopes are treated from a common perspective. Topics covered include: - Design Methods and Project Management - Telescope Optics - Stray Light Control - Structure and Mechanisms - Pointing and Control - Active and Adaptive Optics - Thermal Control - Integration and Verification - Observatory Enclosure and Siting
In the early years of the twentieth century, Victor Hess of Germany flew instruments in balloons and so discovered in 1912 that an extra- errestial radiation of unknown origin is incident on the earth with an almost constant intensity at all times. These penetrating non solar radiations which were called Cosmic Rays by Millikan, USA, opened the new frontier of space physics and many leading scientists were attracted to it. At the end of World War II a number of space vehicles, e.g. stratospheric balloons, rockets and satellites were developed. In 1950 and onwards, these vehicles enabled spectacular advances in space physics and space astrophysics. New horizons were opened in the explorations of cosmic rays, the earth's magnetosphere, the Sun and the heliosphere, the moon and the planets. Using space-borne instruments, exciting discoveries were made of stars, and galaxies in the infra-red, ultra violet, x-ray and gamma-ray wavelengths. In this text book these fascinating new findings are presented in depth and on a level suitable for senior undergraduate and graduate students, research scientists and scientists of other disciplines. Although there are several excellent books and monographs on different aspects, most of these deal with specific areas. In this text book the findings of space physics and astrophysics are presented in an integrated manner with proper introductions to the fundamental aspects, and these are supplemented by relevant ground based observations."
'Remember to look up at the stars and not down at your feet' How did it all begin? Is there a God? Throughout his extraordinary career, Stephen Hawking expanded our understanding of the universe and unravelled some of its greatest mysteries. In How Did It All Begin? the world famous cosmologist and bestselling author of A Brief History of Time explores the fundamental questions of our existence. 'A brilliant mind' Daily Telegraph Brief Answers, Big Questions: this stunning paperback series offers electrifying essays from one of the greatest minds of our age, taken from the original text of the No. 1 bestselling Brief Answers to the Big Questions.
This peer-reviewed book presents a comprehensive overview of the role space is playing in enabling Latin America to fulfill its developmental aspirations. Following on from the highly acclaimed Part 1 and Part 2, it explains how space and its applications can be used to support the development of the full range and diversity of Latin America societies, while being driven by Latin American goals. The Latin American space sector is currently undergoing a phase of rapid and dynamic expansion, with new actors entering the field and with space applications increasingly being used to support the continent's social, economic, and political development. All across Latin America, attention is shifting to space as a fundamental part of the continental development agenda, and the creation of a Latin American space agency is evidence of this. Additionally, while in recent years, significant advances in economic and social development have lifted many of Latin America's people out of poverty, there is still much that needs to be done to fulfill the basic needs of the population and to afford them the dignity they deserve. To this end, space is already being employed in diverse fields of human endeavor to serve Latin America's goals for its future, but there is still a need for further incorporation of space systems and data. This book will appeal to researchers, professionals and students in fields such as space studies, international relations, governance, and social and rural development.
This edited volume contains 24 different research papers by members of the History and Heritage Working Group of the Southeast Asian Astronomy Network. The chapters were prepared by astronomers from Australia, France, Germany, India, Indonesia, Japan, Malaysia, the Philippines, Scotland, Sweden, Thailand and Vietnam. They represent the latest understanding of cultural and scientific interchange in the region over time, from ethnoastronomy to archaeoastronomy and more. Gathering together researchers from various locales, this volume enabled new connections to be made in service of building a more holistic vision of astronomical history in Southeast Asia, which boasts a proud and deep tradition.
This open access book serves as textbook on the physics of the radiation belts surrounding the Earth. Discovered in 1958 the famous Van Allen Radiation belts were among the first scientific discoveries of the Space Age. Throughout the following decades the belts have been under intensive investigation motivated by the risks of radiation hazards they expose to electronics and humans on spacecraft in the Earth's inner magnetosphere. This textbook teaches the field from basic theory of particles and plasmas to observations which culminated in the highly successful Van Allen Probes Mission of NASA in 2012-2019. Using numerous data examples the authors explain the relevant concepts and theoretical background of the extremely complex radiation belt region, with the emphasis on giving a comprehensive and coherent understanding of physical processes affecting the dynamics of the belts. The target audience are doctoral students and young researchers who wish to learn about the physical processes underlying the acceleration, transport and loss of the radiation belt particles in the perspective of the state-of-the-art observations.
This book, the first of a two-volume set, focuses on the basic physical principles of blackbody radiometry and describes artificial sources of blackbody radiation, widely used as sources of optical radiation, whose energy characteristics can be calculated on the base of fundamental physical laws. Following a review of radiometric quantities, radiation laws, and radiative heat transfer, it introduces the basic principles of blackbody radiators design, details of their practical implementation, and methods of measuring their defining characteristics, as well as metrological aspects of blackbody-based measurements. Chapters are dedicated to the effective emissivity concept, methods of increasing effective emissivities, their measurement and modeling using the Monte Carlo method, techniques of blackbody radiators heating, cooling, isothermalization, and measuring their temperature. An extensive and comprehensive reference source, this book is of considerable value to students, researchers, and engineers involved in any aspect of blackbody radiometry.
Scientific Cosmology and International Orders shows how scientific ideas have transformed international politics since 1550. Allan argues that cosmological concepts arising from Western science made possible the shift from a sixteenth-century order premised upon divine providence to the present order centred on economic growth. As states and other international associations used scientific ideas to solve problems, they slowly reconfigured ideas about how the world works, humanity's place in the universe, and the meaning of progress. The book demonstrates the rise of scientific ideas across three cases: natural philosophy in balance of power politics, 1550-1815; geology and Darwinism in British colonial policy and international colonial orders, 1860-1950; and cybernetic-systems thinking and economics in the World Bank and American liberal order, 1945-2015. Together, the cases trace the emergence of economic growth as a central end of states from its origins in colonial doctrines of development and balance of power thinking about improvement. |
You may like...
Human Development - A Life-Span View
Robert Kail, John Cavanaugh
Paperback
Cross-Cultural Psychology - Critical…
Eric B. Shiraev, David A Levy
Hardcover
A Workbook of Ethical Case Scenarios in…
Darren Sush, Adel Najdowski
Paperback
R1,250
Discovery Miles 12 500
|