![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time
Einstein's general theory of relativity is introduced in this
advanced undergraduate and beginning graduate level textbook.
Topics include special relativity, in the formalism of Minkowski's
four-dimensional space-time, the principle of equivalence,
Riemannian geometry and tensor analysis, Einstein field equation,
as well as many modern cosmological subjects, from primordial
inflation and cosmic microwave anisotropy to the dark energy that
propels an accelerating universe.
What is time? How has our relationship to time changed through
history and how does time structure our social lives?
In this lively introduction, Barbara Adam explores the changing
ways in which time has been understood and how this knowledge is
embedded in cultural practices. She takes the reader on a journey
of discovery that extends from ancient mythology and classical
philosophy to the contemporary social world of high-speed computer
networks and globalized social relations. The book poses key questions about the nature of time, how it is
conceptualized, what it means in practice and how the parameters
set by nature have been transcended across the ages by the human
quest for time know-how and control. It provides the reader with a
good basis for understanding the role of time in contemporary
social life.
This book assumes no previous knowledge. Through its broad perspective and transdisciplinary approach it provides an accessible and wide-ranging introduction for students and teachers across the social sciences.
The modern Persian word for cosmology is "Keyhan-shenakht," which is also the title of a Persian book written more than 800 years ago. The same term can also be found in Old Persian. In spite of this old tradition, modern cosmology is a new omer within the scientific disciplines in Iran. The cosmology community' is small and not yet well established. Given the spectacular recent advances in observational and theoretical cosmology, the large amount of new observational data which will become available in the near future, and the rapid expansion of the international cosmology community, it was realized that Iran should play a more active role in the exciting human endeavour which cosmology constitutes. This was the main motivation to establish a School on Cosmology in Iran. The plan is to hold a cosmology school every three years somewhere in Iran. The focus of this First School on Cosmology was chosen to be structure formation, a rapidly evolving cornerstone of modern cosmology. The topics of the school were selected in order to give both a broad overview of the current status of cosmological structure formation, and an in-depth dis cussion of the key issues theory of cosmological perturbations and analysis of cosmic microwave anisotropies. The lectures by Blanchard and Sarkar give an overview of homogeneous cosmological models and standard big bang cosmology. In his contribution, Padmanabhan presents a comprehen sive discussion of the growth of cosmological perturbations."
This Open Access book gives a comprehensive account of both the history and current achievements of molecular beam research. In 1919, Otto Stern launched the revolutionary molecular beam technique. This technique made it possible to send atoms and molecules with well-defined momentum through vacuum and to measure with high accuracy the deflections they underwent when acted upon by transversal forces. These measurements revealed unforeseen quantum properties of nuclei, atoms, and molecules that became the basis for our current understanding of quantum matter. This volume shows that many key areas of modern physics and chemistry owe their beginnings to the seminal molecular beam work of Otto Stern and his school. Written by internationally recognized experts, the contributions in this volume will help experienced researchers and incoming graduate students alike to keep abreast of current developments in molecular beam research as well as to appreciate the history and evolution of this powerful method and the knowledge it reveals.
This book presents two important new findings. First, it demonstrates from first principles that turbulent heating offers an explanation for the non-adiabatic decay of proton temperature in solar wind. Until now, this was only proved with reduced or phenomenological models. Second, the book demonstrates that the two types of anisotropy of turbulent fluctuations that are observed in solar wind at 1AU originate not only from two distinct classes of conditions near the Sun but also from the imbalance in Alfven wave populations. These anisotropies do not affect the overall turbulent heating if we take into account the relation observed in solar wind between anisotropy and Alfven wave imbalance. In terms of the methods used to obtain these achievements, the author shows the need to find a very delicate balance between turbulent decay and expansion losses, so as to directly solve the magnetohydrodynamic equations, including the wind expansion effects.
In an expanding world with limited resources, optimization and uncertainty quantification have become a necessity when handling complex systems and processes. This book provides the foundational material necessary for those who wish to embark on advanced research at the limits of computability, collecting together lecture material from leading experts across the topics of optimization, uncertainty quantification and aerospace engineering. The aerospace sector in particular has stringent performance requirements on highly complex systems, for which solutions are expected to be optimal and reliable at the same time. The text covers a wide range of techniques and methods, from polynomial chaos expansions for uncertainty quantification to Bayesian and Imprecise Probability theories, and from Markov chains to surrogate models based on Gaussian processes. The book will serve as a valuable tool for practitioners, researchers and PhD students.
At the XXIX IAU General Assembly held in Honolulu from 3-14 August 2015, the meetings known as Special Sessions and Joint Discussions were replaced by new 'Focus Meetings'. Astronomy in Focus XXIXA presents the most relevant contributions from the Focus Meetings together with summaries of all the accepted papers and posters. It covers the meetings on the following areas: dynamical problems in extrasolar planet science; astronomical heritage; scholarly publishing in astronomy; statistics and exoplanets; the exploration of small worlds; ground and space astrophysics and heliophysics; laboratory astrophysics; brightness variations of the Sun and Sun-like stars; astronomy for development; and mitigating the threats of light pollution and radio frequency interference. The publications Astronomy in Focus XXIXA (together with its companion, XXIXB), the proceedings of the six main Scientific Symposia and Reports on Astronomy: Commission Legacy Reports, fully cover the XXIX IAU General Assembly.
At the XXIX IAU General Assembly held in Honolulu from 3-14 August 2015, the meetings known as Special Sessions and Joint Discussions were replaced by new 'Focus Meetings'. Astronomy in Focus XXIXB presents the most relevant contributions from the Focus Meetings together with summaries of all the accepted papers and posters. It covers the following topics: the legacy of Planck; x-ray surveys of the hot and energetic cosmos; stellar physics in galaxies; stellar explosions; gravitational waves and structure formation; the search for water and life's building blocks; red supergiants in the local Universe; advances in stellar physics from asteroseismology; scale-free processes in the Universe; and the frontiers of our understanding of cluster and galaxy evolution. The publications Astronomy in Focus XXIXB (together with its companion, XXIXA), the proceedings of the six main Scientific Symposia and Reports on Astronomy: Commission Legacy Reports, fully cover the XXIX IAU General Assembly.
IMAGE (Imager for Magnetopause-to-Aurora Global Exploration) is the first NASA MIDEX mission and the first mission dedicated to imaging the Earth's magnetosphere. This volume offers detailed descriptions of the IMAGE instrumentation and of the image inversion techniques used to interpret the data. Also included are chapters on the IMAGE science objectives, the spacecraft design and capabilities, science and mission operations, and the processing and distribution of IMAGE's nonproprietary data products.
Long-term measurements of field strength have been performed over a 160 km path entirely over sea in the Baltic area. For short periods the radio measurements have been combined with meteorolo- gical measurements in order to describe the structure of the re- fractive index field. The heigth of layers was continously deter- mined by remote sensing techniques and their thickness and inten- sity by airborne and balloonborne instruments. From these data, field strengths have been calculated for scatter, reflection and duct propagation. It will be shown that reflection propagation dominates at the low frequency end. Whilst at higher frequencies, very sharp layers are required for reflection propagation. At these frequencies, high signals are generally caused by duct propagation. 1.1 Instruments and plan for the experiments. The radio measurements were performed with the following equipment. 5000 MHz: Transmitted power 500 kW (pulsed). Reflector antennas. Free space field strength over the path + 15 dBm. 460 MHz: Transmitted power 10 W (CW) 8 element Yagi antennas. Free space field strength over the path - 65 dBm. 170 MHz: Transmitted power 10, W(CW). 8 element Yagi antennas. Free space field strength over the path - 60 dBm. The antenna heights for the transmitters and receivers were 100 m above sea level. The field strengths were recorded on ink recorders and simul- taneously sampled, digitized and evaluated on line in a minicom- puter. For the meteorological measurements, the following equipment were used: Airborne microwave refractometer and thermistor, flown up to 2000 m.
MUL.APIN, written sometime before the 8th century BC, was the most widely copied astronomical text in ancient Mesopotamia: a compendium including information such as star lists, descriptions of planetary phases, mathematical schemes for the length of day and night, a discussion of the luni-solar calendar and rules for intercalation, and a short collection of celestial omens. This book contains an introductory essay, followed by a new edition of the text and a facing-page transliteration and English translation. Finally, the book contains a new and detailed commentary on the text. This is a fascinating study, and an important resource for anyone interested in the history of astronomy.
The second edition of this popular text provides undergraduates with a quantitative yet accessible introduction to the physical principles underlying the collection and analysis of observational data in contemporary optical and infrared astronomy. The text clearly links recent developments in ground- and space-based telescopes, observatory and instrument design, adaptive optics, and detector technologies to the more modest telescopes and detectors that students may use themselves. Beginning with reviews of the most relevant physical concepts and an introduction to elementary statistics, students are given the firm theoretical foundation they need. New topics, including an expanded treatment of spectroscopy, Gaia, the Large Synoptic Survey Telescope, and photometry at large redshifts bring the text up to date. Historical development of topics and quotations emphasize that astronomy is both a scientific and a human endeavour, while extensive end-of-chapter exercises facilitate the students' practical learning experience.
Covering the origins of life on Earth and our search for life elsewhere in the Universe, examining what life could look like, the ways scientists are looking for it and what we expect to find.
The Energetic Gamma-Ray Experiment Telescope (EGRET) instru ment on the Compton Gamma-Ray Observatory left as a legacy its Third Catalog of High Energy Gamma-Ray Sources, whose detections include a large number of blazars, some pulsars, the Large Magellanic Cloud and a solar flare. Most of the newly discovered objects - a majority of the catalog -are unidentified sources, with a clearly predominant Galactic population. Are all these radio-quiet pulsars, like Geminga, or is there a novel type of celestial object, awaiting identification? In spite of the limited angular resolution provided by EGRET and COMPTEL, there is still much to learn about unidentified, -ray sources: correlation studies, multiwavelength observations and theoretical work can provide valuable clues, specially if these efforts are carried out in a coordinated manner. The aim of this workshop, held from October 9 to 11, 2000, at the Instituto N acional de Astrofisica, Optica y Electronica, at Tonantzintla, Mexico, was to gather experts on the subject, including observational as tronomers specialized in other regions of the electromagnetic spectrum, in an effort to address the question of the Nature of Galactic high-energy gamma-ray sources, both from the theoretical and observational perspec tive, and elaborate schemes for future identification studies which can make use of existing and forthcoming facilities."
G. M. Bernstein, M. L. Fischer, and P. L. Richards Department of Physics, University of California Berkeley, California 94720, U. S. A. J. B. Peterson Department of Physics, Princeton University Princeton, New Jersey 08540, U. S. A. T. Timusk Department of Physics, McMaster University Hamilton, Ontario L8S 4M1 , Canada ABSTRACT. Recent measurements of the diffuse background at millimeter wavelengths indicate no departure from a Planck spectrum near the peak of the blackbody curve. Anisotropy measurements indicate no structure, at the 2% level, in the recently detected submillimeter excess. We report here the results of an April 1987 balloon flight of an instrument designed to measure the spectrum of the cosmic background radiation from 1 mm to 3 mm. A description of the instrument can be found in Peterson, Richards, and Timusk (1985). Modifications were made to the apparatus and experimental procedure in order to identify and reduce systematic errors. Results from the latest flight indicate that two effects hamper the interpretation of the data. These systematic effects will be described in detail in a forthcoming publications; they are probably responsible for the non-Planckian spectrum measured by Woody and Richards (1981). Attempts to remove the systematic effects from our data yield the upper limits to the CBR brightness temperature in 4 bands from 1 mm to 3 mm. There is no evidence for an excess of radiation near the 2. 8 K blackbody peak.
Evry SCHATZMAN Radio-Astronomie, E. N. S. , Paris, France The recent developments of the Supernova theory and numerical relativity can lead in the near future to an understanding of gravitational collapse and to a reliable prediction of the amplitude of the gravitational waves generated during neutron star formation. These prospects explain the great interest which has developed in the international scientific community for the workshop. We were financially limited in the number of guests and participants and we apologize for not having been able to gather all the specialists actually involved in research programs relevant to gravitational collapse and numerical relativity. This limitation took place despite all the financial assistance which we have received from various institutions, first the C. N. R. S. (Centre National de 1a Recherche Scientifique) which has supported the request of Dr. Monique SIGNORE of organizing a workshop. Furhter help was obtained from I. N. A. G. (Institut National d'Astronomie et de Geophysique), Toulouse University (Universite "Paul Sabatier" or "Toulouse III"), the Toulouse section of C. N. E. S. (Centre National d'Etudes Spatia1es), the Department of theoretical physics of the C. E. A. , the Department of Astrophysique of the C. E. A. (Centre d'Etudes Nucleaires, Saclay), D. R. E. T. (Direction des Recherches Etudes et Techniques) and last but not least an important grant from NATO, whose scientific Committee recognized the international significance of the workshop. The meeting was organized by Professor D.
Knowledge Discovery in Big Data from Astronomy and Earth Observation: Astrogeoinformatics bridges the gap between astronomy and geoscience in the context of applications, techniques and key principles of big data. Machine learning and parallel computing are increasingly becoming cross-disciplinary as the phenomena of Big Data is becoming common place. This book provides insight into the common workflows and data science tools used for big data in astronomy and geoscience. After establishing similarity in data gathering, pre-processing and handling, the data science aspects are illustrated in the context of both fields. Software, hardware and algorithms of big data are addressed. Finally, the book offers insight into the emerging science which combines data and expertise from both fields in studying the effect of cosmos on the earth and its inhabitants.
This book provides in-depth explanations of design theories and methods for remote sensing satellites, as well as their practical applications. There have been significant advances in spacecraft remote sensing technologies over the past decade. As the latest edition of the book "Space Science and Technology Research," it draws on the authors' vast engineering experience in system design for remote sensing satellites and offers a valuable guide for all researchers, engineers and students who are interested in this area. Chiefly focusing on mission requirements analyses and system design, it also highlights a range of system design methods.
This book aims to make Galileo Galilei (1564-1642) accessible to the modern reader by refashioning the great scientist's masterpiece Discourses and Mathematical Demonstrations Relating to Two New Sciences in today's language. Galileo Galilei stands as one of the most important figures in history, not simply for his achievements in astronomy, physics, and engineering and for revolutionizing science and the scientific method in general, but also for the role that he played in the (still ongoing) drama concerning entrenched power and its desire to stifle any knowledge that may threaten it. Therefore, it is important that today's readers come to understand and appreciate what Galilei accomplished and wrote. But the mindset that shapes how we see the world today is quite different from the mindset -- and language -- of Galilei and his contemporaries. Another obstacle to a full understanding of Galilei's writings is posed by the countless historical, philosophical, geometrical, and linguistic references he made, along with his often florid prose, with its blend of Italian and Latin. De Angelis' new rendition of the work includes translations of the original geometrical figures into algebraic formulae in modern notation and allows the non-specialist reader to follow the thread of Galileo's thought and in a way that was barely possible until now.
This book is intended as an introduction to the field of planetary systems at the postgraduate level. It consists of four extensive lectures on Hamiltonian dynamics, celestial mechanics, the structure of extrasolar planetary systems and the formation of planets. As such, this volume is particularly suitable for those who need to understand the substantial connections between these different topics.
Proceedings of the 99th Colloquium of the International Astronomical Union, held in Balaton, Hungary, June 22-27, 1987
A total eclipse of the Sun is the most awesome sight in the
heavens. Totality takes you to eclipses of the past, present, and
future, and lets you see--and feel--why people travel to the ends
of the Earth to observe them. |
You may like...
Sky Guide 2026 - Southern Africa
Astronomical Society of Southern Africa
Paperback
A Brief History Of Black Holes - And Why…
Dr. Becky Smethurst
Paperback
|