![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Ceramics & glass technology
This book highlights the production of green composites from various sustainable raw materials. We now live in an environmentally conscious era, in which sustainable raw materials (renewable, biodegradable, recycled), sustainable processing sequences, the production of recyclable and biodegradable products, and avoiding the depletion of renewable resources are key considerations with regarding to producing any product. The textile sector is no exception. Accordingly, this book addresses these aspects in connection with textiles, and discusses how they can be actively practiced.
This short book provides an update on various methods for incorporating phase changing materials (PCMs) into building structures. It discusses previous research into optimizing the integration of PCMs into surrounding walls (gypsum board and interior plaster products), trombe walls, ceramic floor tiles, concrete elements (walls and pavements), windows, concrete and brick masonry, underfloor heating, ceilings, thermal insulation and furniture an indoor appliances. Based on the phase change state, PCMs fall into three groups: solid-solid PCMs, solid-liquid PCMs and liquid-gas PCMs. Of these the solid-liquid PCMs, which include organic PCMs, inorganic PCMs and eutectics, are suitable for thermal energy storage. The process of selecting an appropriate PCM is extremely complex, but crucial for thermal energy storage. The potential PCM should have a suitable melting temperature, and the desirable heat of fusion and thermal conductivity specified by the practical application. Thus, the methods of measuring the thermal properties of PCMs are key. With suitable PCMs and the correct incorporation method, latent heat thermal energy storage (LHTES) can be economically efficient for heating and cooling buildings. However, several problems need to be tackled before LHTES can reliably and practically be applied.
This book focus on the challenges faced by cutting materials with superior mechanical and chemical characteristics, such as hardened steels, titanium alloys, super alloys, ceramics and metal matrix composites. Aspects such as costs and appropriate machining strategy are mentioned. The authors present the characteristics of the materials difficult to cut and comment on appropriate cutting tools for their machining. This book also serves as a reference tool for manufacturers working in industry.
This book presents a unique collection of up-to-date applications of graphene for water science. Because water is an invaluable resource and the intelligent use and maintenance of water supplies is one of the most important and crucial challenges that stand before mankind, new technologies are constantly being sought to lower the cost and footprint of processes that make use of water resources as potable water as well as water for agriculture and industry, which are always in desperate demand. Much research is focused on graphene for different water treatment uses. Graphene, whose discovery won the 2010 Nobel Prize in physics, has been a shining star in the material science in the past few years. Owing to its interesting electrical, optical, mechanical and chemical properties, graphene has found potential applications in a wide range of areas, including water purification technology. A new type of graphene-based filter could be the key to managing the global water crisis. According to the World Economic Forum's Global Risks Report, lack of access to safe, clean water is the biggest risk to society over the coming decade. Yet some of these risks could be mitigated by the development of this filter, which is so strong and stable that it can be used for extended periods in the harshest corrosive environments, and with less maintenance than other filters on the market. The graphene-based filter could be used to filter chemicals, viruses, or bacteria from a range of liquids. It could be used to purify water, dairy products or wine, or in the production of pharmaceuticals. This book provides practical information to all those who are involved in this field.
This volume will provide interdisciplinary treatment, with a strong materials community, for technical exchange on optoelecronic materials, device application, and system development.
"Ceramography" provides detailed instructions on how to saw, mount,
grind, polish, etch, examine, interpret and measure ceramic
microstructures. This new book includes an atlas of ceramic
microstructures, quantitative microstructural example problems with
solutions, properties and data tables specific to ceramic
microstructures, more than 100 original photographs and
illustrations, and numerous practical tips and tricks of the trade.
Part I of this SpringerBrief presents the problem of a crack between two dissimilar isotropic materials and describes the mathematical background. A fracture criterion is discussed and Methods for calculating fracture parameters such as stress intensity factors using the finite element method and three post-processors are considered. Actual test data and both deterministic and statistical failure curves are presented.In Part II of the book, similar descriptions are given for delaminations in composite laminates. The mathematical treatment of this type of damage including the first term of the asymptotic expansion of the stress and displacement fields is considered. Numerical post-processors for determining stress intensity factors for these cases are reviewed. Two examples of specific laminates are presented: one with a failure curve and the other with a failure surface. Finally, beam specimens used for testing such failures are discussed.
This proceedings volume gathers selected papers presented at the Chinese Materials Conference 2017 (CMC2017), held in Yinchuan City, Ningxia, China, on July 06-12, 2017. This book covers a wide range of metamaterials and multifunctional composites, multiferroic materials, amorphous and high-entropy alloys, advanced glass materials and devices, advanced optoelectronic and microelectronic materials, biomaterials, deformation behavior and flow units in metastable materials, advanced fibers and nano-composites, polymer materials, and nanoporous metal materials. The Chinese Materials Conference (CMC) is the most important serial conference of the Chinese Materials Research Society (C-MRS) and has been held each year since the early 1990s. The 2017 installment included 37 Symposia covering four fields: Advances in energy and environmental materials; High performance structural materials; Fundamental research on materials; and Advanced functional materials. More than 5500 participants attended the congress, and the organizers received more than 700 technical papers. Based on the recommendations of symposium organizers and after peer reviewing, 490 papers have been included in the present proceedings, which showcase the latest original research results in the field of materials, achieved by more than 300 research groups at various universities and research institutes.
With contributed papers from the 2011 Materials Science and Technology symposia, this is a useful one-stop resource for understanding the most important issues involved in the processing, properties, and applications of biomaterials science. Logically organized and carefully selected, the articles cover the themes of the symposia: Next Generation Biomaterials: and Surface Properties of Biomaterials. An essential reference for government labs as well as academics in mechanical and chemical engineering, materials and or ceramics, and chemistry.
This concise handbook covers all aspects of glass-ionomer cements, from the development of these materials in the early 1970s through to the current state of the art. Their physical, chemical, biological, and clinical properties are described as well as how their formulation and usage have evolved over time, giving rise to newer subcategories of the parent materials. Detailed coverage is provided on the clinical use of glass-ionomer cements in restorative and pediatric dentistry and in widely taught and practiced newer approaches, including atraumatic restorative treatment and minimal intervention dentistry. The authors are internationally acclaimed experts who present information in an easy-to-follow format that will appeal to readers. With the renewed worldwide quest for substitute materials for the more traditional amalgam, glass-ionomer cements have the potential for further development and may play a significant role in future trends.
This book is a collection of papers from The American Ceramic Society's 35th International Conference on Advanced Ceramics and Composites, held in Daytona Beach, Florida, January 23-28, 2011. This issue includes papers presented in the 8th International Symposium on Solid Oxide Fuel Cells: Materials, Science, and Technology on topics such as Cell and Stack Development; Electrochemical/Mechanical/Thermal Performance; Electrodes; Interconnects; Novel Cell/Stack Design and Processing; and Reliability/Degradation.
This book details the relationships between microstructure, interface roughness, and properties of thermal barrier coatings. The author proposes a method for the reduction of the thermal conductivity of the ceramic layer in order to increase the lifetime of thermal barrier coatings. He includes models for the optimization of ceramic layer microstructure and interface roughness.
This book is a collection of papers from The American Ceramic Society's 35th International Conference on Advanced Ceramics and Composites, held in Daytona Beach, Florida, January 23-28, 2011. This issue includes papers presented in the Mechanical Behavior and Performance of Ceramics & Composites Symposium on topics such as processing-microstructure properties correlations; fracture mechanics, modeling and testing; tribological properties; applications; and processing.
This book presents the findings of a detailed study to explore the behavior of architectural glazing systems during and after an earthquake and to develop design proposals that will mitigate or even eliminate the damage inflicted on these systems. The seismic behavior of common types of architectural glazing systems are investigated and causes of damage to each system, identified. Furthermore, depending on the geometrical and structural characteristics, the ultimate horizontal load capacity of glass curtain wall systems is defined based on the stability of the glass components. Detailed attention is devoted to the incorporation of advanced connection devices between the structure of the building and the building envelope system in order to minimize the damage to glazed components. An innovative new connection device is introduced that results in a delicate and functional system easily incorporated into different architectural glazing systems, including those demanding maximum transparency.
This book proposes the use of coffee bagasse ash (CBA) waste as raw material to be used in ceramic formulations. The approach presented here is a solution to a current ambiental problem as CBA waste is discharged in high amounts in agriculture. The authors analyze the potencial of CBA as a material to substitute feldspar in tile production.
This compilation is a useful one-stop resource for understanding the most important issues in advances in electroceramic materials, covering topics such as design, synthesis, characterization, and properties and applications. This volume contains a collection of papers from the Advanced Dielectric Materials and Electronic Devices and Electroceramics Technologies symposia held during MS&T 08.
A collection of Papers Presented at the 28th International Conference and Exposition on Advanced Ceramics and Composites held in conjunction with the 8th International Symposium on Ceramics in Energy Storage and Power Conversion Systems.
This book provides an overview of the field of flow and heat transfer in porous medium and focuses on presentation of a generalized approach to predict drag and convective heat transfer within porous medium of arbitrary microscopic geometry, including reticulated foams and packed beds. Practical numerical methods to solve natural convection problems in porous media will be presented with illustrative applications for filtrations, thermal storage and solar receivers.
This book focuses on the creative use of chemistry in the fabrication of a variety of oxide and non-oxide materials which are likely to play a crucial role in the development of the next generation of microelectronics devices. It includes inorganic precursor chemistry, gas-phase and solid-state chemistry, materials science, chemical physics and chemical engineering. Highlights include the deposition of high-k dielectric gate oxides, ferroelectric oxide films for infrared and memory applications, low-k dielectrics, TiN and TaN diffusion barriers, and fresh precursors for III-V nitrides. The emphasis is on chemical methods for the controlled deposition of thin films, for which chemical vapor deposition (CVD) has proven to be a useful and versatile technique. Of particular interest is the use of liquid-injection MOCVD for the deposition of oxide multilayers and superlattices. Solution deposition techniques such as sol-gel, metalorganic decomposition (MOD), hydrothermal processing are also prominently featured. Topics include: CVD of oxide ceramics; CVD of nonoxide ceramics; solution deposition of electronic ceramics; alternative chemical processing methods and characterization of electronic ceramics..
65th Conference on Glass Problems, includes 18 papers.
This book presents synthesis, characterization, and applications of macroporous, mesoporous, nanoporous, hierarchical porous, porous metals, and porous ceramics. Special emphasis is given to the preparation of porous activated carbon materials and porous ionic liquid-derived materials for CO2 emissions mitigation. Additionally, a chapter includes the physical and mathematical modeling in porous media. Many analytical techniques for characterization are discussed in this book. Also, the biomedical and industrial applications of porous materials in adsorption, catalysis, biosensors, drug delivery, nanotechnology are described. The content helps solving fundamental and applied problems in porous materials with length scales varying from macro- to nano-level.
A handy reference for technicians who want to understand the nature, properties and applications, of engineering ceramics. The book meets the needs of those working in the ceramics industry, as well as of technicians and engineers involved in the application of ceramic materials.
Faserverbundwerkstoffe finden dort ihren Einsatz, wo gleichzeitig leicht und stabil gebaut werden muss, z.B. in der Luftfahrtindustrie und im Kraftfahrzeugbau. Hergestellt werden diese Materialien zumeist von der chemischen Industrie, da sie auf Kunststoffen basieren. Dieses Buch beschreibt alle heute auf dem Markt befindlichen Faser- und Matrixsysteme von Faserverbundbauweisen. Diese werden schon jetzt oder in naher Zukunft in vielen technischen Bereichen eingesetzt. Das Werk dient sowohl dem Industriepraktiker, der Faserverbundwerkstoffe herstellt oder einsetzt, als auch dem Wissenschaftler und Studenten als detailliertes Nachschlagewerk und Lehrbuch. Es ist Teil eines mehrbandigen Gesamtwerks uber Bauweisen von denselben Autoren, renommierten Industriefachleuten und Hochschulforschern. Fur Ingenieure in der Kraftfahrzeug- und Flugzeugindustrie sowie in der chemischen Industrie
A collection of 14 papers from the Armor Ceramics symposium held during The American Ceramic Society's 38th International Conference on Advanced Ceramics and Composites, held in Daytona Beach, Florida, January 26-31, 2014.
Due to its many potential benefits, including high electrical
efficiency and low environmental emissions, solid oxide fuel cell
(SOFC) technology is the subject of extensive research and
development efforts by national laboratories, universities, and
private industries. In these proceedings, international scientists
and engineers present recent technical progress on
materials-related aspects of fuel cells including SOFC component
materials, materials processing, and cell/stack design,
performance, and stability. Emerging trends in electrochemical
materials, electrodics, interface engineering, long-term chemical
interactions, and more are included. |
![]() ![]() You may like...
|