![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time > Cosmology & the universe
Illustrated with breathtaking images of the Solar System and of the Universe around it, this book explores how the discoveries within the Solar System and of exoplanets far beyond it come together to help us understand the habitability of Earth, and how these findings guide the search for exoplanets that could support life. The author highlights how, within two decades of the discovery of the first planets outside the Solar System in the 1990s, scientists concluded that planets are so common that most stars are orbited by them. The lives of exoplanets and their stars, as of our Solar System and its Sun, are inextricably interwoven. Stars are the seeds around which planets form, and they provide light and warmth for as long as they shine. At the end of their lives, stars expel massive amounts of newly forged elements into deep space, and that ejected material is incorporated into subsequent generations of planets. How do we learn about these distant worlds? What does the exploration of other planets tell us about Earth? Can we find out what the distant future may have in store for us? What do we know about exoworlds and starbirth, and where do migrating hot Jupiters, polluted white dwarfs, and free-roaming nomad planets fit in? And what does all that have to do with the habitability of Earth, the possibility of finding extraterrestrial life, and the operation of the globe-spanning network of the sciences?
This book is an introduction to gravitational waves and related astrophysics. It provides a bridge across the range of astronomy, physics and cosmology that comes into play when trying to understand the gravitational-wave sky. Starting with Einstein's theory of gravity, chapters develop the key ideas step by step, leading up to the technology that finally caught these faint whispers from the distant universe. The second part of the book makes a direct connection with current research, introducing the relevant language and making the involved concepts less mysterious. The book is intended to work as a platform, low enough that anyone with an elementary understanding of gravitational waves can scramble onto it, but at the same time high enough to connect readers with active research - and the many exciting discoveries that are happening right now. The first part of the book introduces the key ideas, following a general overview chapter and including a brief reminder of Einstein's theory. This part can be taught as a self-contained one semester course. The second part of the book is written to work as a collection of "set pieces" with core material that can be adapted to specific lectures and additional material that provide context and depth. A range of readers may find this book useful, including graduate students, astronomers looking for basic understanding of the gravitational-wave window to the universe, researchers analysing data from gravitational-wave detectors, and nuclear and particle physicists.
Enjoy Our Universe is a guide for an enjoyable visit to the Universe. The "Universe" refers to all "observable things," ranging in size from the entire cosmos to elementary particles. This small tome on fundamental physics, cosmology, Higgs bosons, time travel and all that, is unlike any other analogous book. Its scientific statements are correct or, at least, they coincide with the opinions held by the vast majority of experts. It establishes clear distinctions between things we know for sure - in the sense of having strong observational support for them - and things that we know that we do not know, or we do not understand. In this sense, it is scientifically honest. In descriptions of our Universe and of the way it functions, beauty is a recurring word. In an attempt to portray its beauty from the eyes of the beholder, the book is profusely illustrated. Its offbeat, tongue-in-cheek illustrations greatly enhance its readability, particularly in those chapters whose understanding, admittedly, requires a little extra effort. This book's idiosyncracies remind us of our own smallness and eccentricities even as we read about the logic, function and magnificence of the Universe.
This book is a simple, non-technical introduction to cosmology, explaining what it is and what cosmologists do. Peter Coles discusses the history of the subject, the development of the Big Bang theory, and more speculative modern issues like quantum cosmology, superstrings, and dark matter.
Die Sprache und die Methoden der modernen Differentialgeometrie sind in der vergangenen Dekade immer mehr in die theoretische Physik eingedrungen. Was vor 15 Jahren, als das Buch zuerst als Vorlesungsskriptum herauskam, noch extravagant erschien, ist heute ein Gemeinplatz. Dies hat mich in der Ansicht gestarkt, dass die Studenten der theoretischen Physik diese Sprache lernen mussen, je eher desto besser. Schliesslich werden sie die Professoren des 21. Jahrhunderts sein und es ware absurd, wurden sie dann die Mathematik des 19. Jahrhunderts lehren. Daher habe ich in der neuen Auflage auf dieser Symbolik beharrt, einige Fehler korrigiert und ein Kapi- tel uber Eichtheorien hinzugefugt. Da es sich gezeigt hat, dass sie die fundamentalen Wechselwirkungen beschreiben und ihre Struktur zumindest auf dem klassischen Ni- veau hinreichend klar ist, scheinen sie mir zur Minimalausrustung zu gehoeren, uber die jeder Theoretiker verfugen muss. Mit Bedauern musste ich davon Abstand nehmen, die neueren Entwicklungen der Kosmologie und Kaluza-Klein-artige Theorien aufzu- nehmen, aber ich fuhlte mich an mein ursprungliches Versprechen gebunden, den Studenten keine theoretischen Spekulationen aufzuburden, fur die es keine sichere experimentelle Evidenz gibt. Vielen Physikern bin ich fur Hinweise bezuglich dieses Bandes sehr verpflichtet. Insbesondere P. Aichelburg, H. Rumpf und vor allem H. Urbantke haben zahlreiche Korrekturen und Verbesserungen angebracht. I. Dahl-Jensen sei dafur gedankt, dass sie manche nach Gefuhl angefertigte Zeichnungen mit dem Computer ins richtige Lot gebracht hat.
Covering 13.8 billion years in some 100 pages, a calculatedly concise, wryly intelligent history of everything, from the Big Bang to the advent of human civilization With wonder, wit, and flair-and in record time and space-geophysicist David Bercovici explains how everything came to be everywhere, from the creation of stars and galaxies to the formation of Earth's atmosphere and oceans, to the origin of life and human civilization. Bercovici marries humor and legitimate scientific intrigue, rocketing readers across nearly fourteen billion years and making connections between the essential theories that give us our current understanding of topics as varied as particle physics, plate tectonics, and photosynthesis. Bercovici's unique literary endeavor is a treasure trove of real, compelling science and fascinating history, providing both science lovers and complete neophytes with an unforgettable introduction to the fields of cosmology, geology, climate science, human evolution, and more.
The Fourth Edition ofIntroduction to Cosmology provides a concise, authoritative study of cosmology at an introductory level. Starting from elementary principles and the early history of cosmology, the text carefully guides the student on to curved spacetimes, special and general relativity, gravitational lensing, the thermal history of the Universe, and cosmological models, including extended gravity models, black holes and Hawking's recent conjectures on the not-so-black holes. Introduction to Cosmology, Fourth Edition includes: * New theoretical approaches and in-depth material on observational astrophysics and expanded sections on astrophysical phenomena * Illustrations throughout and comprehensive references with problems at the end of each chapter and a rich index at the end of the book * Latest observational results from WMAP9, ACT, and Planck, and all cosmological parameters have been brought up to date. This text is invaluable for undergraduate students in physics and astrophysics taking a first course in cosmology. Extensively revised, this latest edition extends the chapter on cosmic inflation to the recent schism on eternal inflation and multiverses. Dark matter is discussed on galaxy and cluster scales, and dark matter candidates are presented, some requiring a five-dimensional universe and several representing various types of exotica. In the context of cosmic structures the cold dark matter paradigm is described. Dark energy models include the cosmological constant, quintessence and other single field models, f(R) models and models requiring extra dimensions.
In Our Mathematical Universe, Max Tegmark, one of the most original physicists at work today, leads us on an astonishing journey to explore the mysteries uncovered by cosmology and to discover the nature of reality Part-history of the cosmos, part-intellectual adventure, Our Mathematical Universe travels from the Big Bang to the distant future via parallel worlds, across every possible scale - from the sub-atomic to the intergalactic - showing how mathematics provides the answers to our questions about the world. Where do we come from? What makes the universe the way it is? In essence, why are we here? With dazzling clarity, Max Tegmark ponders these deep mysteries and allows us to grasp the most cutting-edge and mind-boggling theories of physics. What he proposes is an elegant and fascinating idea: that our physical world not only is described by mathematics, but that it is mathematics. 'Our Mathematical Universe is nothing if not impressive. Brilliantly argued and beautifully written, it is never less than thought-provoking about the greatest mysteries of our existence' - New York Times 'An amazing ride through the rich landscape of contemporary cosmology... Physics could do with more characters like Tegmark... an imaginative intellect and a charismatic presence' - Clive Cookson, Financial Times Max Tegmark is author or co-author of more than 200 technical papers, twelve of which have been cited more than 500 times. He has featured in dozens of science documentaries, and his work with the SDSS collaboration on galaxy clustering shared the first prize in Science magazine's "Breakthrough of the Year: 2003". He holds a Ph.D from the University of California, Berkeley, and is a physics professor at MIT.
In den letzten Dekaden hat das Gebiet der klassischen dynamischen Systeme eine beachtliche Renaissance erlebt, und manches, was beim erst en Erscheinen dieses Kur- ses als mathematisch zu hochgestochen erschien, ist heute Gemeingut der aktiven Physiker geworden. Das Ziel der Neuauflage ist es, . dieser Entwicklung zu dienen, indem ich versucht habe, das Buch leserfreundlicher zu gestalten und Fehler auszu- merzen. Da schon die erste Auflage ffir eine einsemestrige Vorlesung reichlich beladen war, wurde neues Material nur in dem Mafie aufgenommen, als anderes weggelassen oder vereinfacht werden konnte. Eine Erweiterung muf3te jedoch das Kapitel mit dem Be- weis des KAM-Satzes erfahren, urn dem neuen Trend in der Physik Rechnung zu tragen. Dieser besteht nicht nur in der Verwendung feinerer mathematischer Hilfs- mittel, sondern auch in einer Neubewertung des Wortes "fundamental". Was frfiher als Schmutzeffekt abgetan wurde, erscheint heute als Folge eines tieferen Prinzips. Ja so- gar diese Keplerschen Gesetze, welche die Radien der Planetenbahnen bestimmen und die man als mystischen Unsinn gerne verschwieg, scheinen in Richtung einer Wahrheit zu deuten, die sich oberflachlicher Betrachtung verschlief3t: SchachteluI). g vollkomme- ner platonischer Korper ffihrt zu Verhaltnissen von Radien, die irrational sind, aber algebraischen Gleichungen niederer Ordnung genfigen. Gerade solche Irrationalzahlen lassen sich am schlechtesten durch rationale approximieren, und Bahnen mit diesem Radiusverhaltnis sind gegenfiber gegenseitigen Storungen am robustesten, da sie am wenigsten unter Resonanzeffekten leiden. In letzter Zeit wurden einige fiberraschende Resultate fiber chaotische Systeme gefunden, doch hat ten deren Beweise leider den Rahmen dieses Buches gesprengt und muf3ten unterbleiben.
A tight-knit, high-powered group of scientists and engineers spent eight years building a satellite designed, in effect, to read the genome of the universe. Launched in 2001, the Wilkinson Microwave Anisotropy Probe (WMAP) reported its first results two years later with a set of brilliant observations that added focus, detail, and insight to our formerly fuzzy view of the cosmos. For more than a year, the WMAP satellite hovered in the cold of deep space, a million miles from Earth, in an effort to determine whether the science of cosmology--the study of the origin and evolution of the universe--has been on the right track for the past two decades. What WMAP was looking for was a barely perceptible pattern of hot and cold spots in the faint whisper of microwave radiation left over from the Big Bang, the event that almost 14 billion years ago gave birth to all of space, time, matter, and energy. The pattern encoded in those microwaves holds the answers to some of the great unanswered questions of cosmology: What is the universe made of? What is its geometry? How much of it consists of the mysterious dark matter and dark energy that continue to baffle astronomers? How fast is it expanding? And did it undergo a period of inflationary hyper-expansion at the very beginning? WMAP has now given definitive answers to these mysteries. On February 11, 2003, the team of researchers went public with the results. Just some of their extraordinary findings: The universe is 13.7 billion years old. The first stars--turned on--when the universe was only 200 million years old, five times earlier than anyone had thought. It is now certain that a mysterious dark energy dominates the universe. Michael Lemonick, who had exclusive access to the researchers as WMAP gathered its data, here tells the full story of WMAP and its surprising revelations. This book is both a personal and a scientific tale of discovery. In its pages, readers will come to know the science of cosmology and the people who, seventy-five years after we first learned that the universe is expanding, deciphered some of its deepest mysteries in the patterns of its oldest light.
Astronomer Joseph Silk explores the Universe from its beginnings to its ultimate fate. He demonstrates how cosmologists study cosmic fossils and relics from the distant past to construct theories of the birth, evolution and future of the Universe. Stars, galaxies, dark matter and dark energy are described, as successive chapters detail the evolution of the Universe from a fraction of a microsecond after the Big Bang. Silk describes how physicists apply theories of subatomic particles to recreate the first moments of the Big Bang, and how astronomers chart the vast depths of space to glimpse how the most distant galaxies formed. He gives an account of the search for dark matter and the dark energy that will determine the ultimate fate of the Universe. Joseph Silk is the Savilian Professor of Astronomy and Head of the Astrophysics Department at the University of Oxford. He was previously Professor of Astronomy at the University of California, Berkeley. He holds a BA in Mathematics from Clare College, Cambridge, and a PhD in Astronomy from Harvard University. Silk is the author, or co-author, of many books, including The Left Hand of Creation (Basic Books, 1994) and A Short History of the Universe (WH Freeman, 1997). He is a Fellow of the Royal Society, the American Physical Society, and the American Association for the Advancement of Science.
Is there any connection between the vastness of the universe of stars and galaxies and the existence of life on a small planet out in the suburbs of the Milky Way? This book shows that there is. In a classic work, John Barrow and Frank Tipler examine the question of Mankind's place in the Universe, taking the reader on a tour of many scientific disciplines and offering fascinating insights into issues such as the nature of life, the search for extraterrestrial intelligence, and the past history and fate of our universe.
Magnetic fields pervade the universe and play an important role in many astrophysical processes. However, they require specialised observational tools, and are challenging to model and understand. This volume provides a unified view of magnetic fields across astrophysical and cosmological contexts, drawing together disparate topics that are rarely covered together. Written by the lecturers of the XXV Canary Islands Winter School, it offers a self-contained introduction to cosmic magnetic fields on a range of scales. The connections between the behaviours of magnetic fields in these varying contexts are particularly emphasised, from the relatively small and close ranges of the Sun, planets and stars, to galaxies and clusters of galaxies, as well as on cosmological scales. Aimed at young researchers and graduate students, this up-to-date review uniquely brings together a subject often tackled by disconnected communities, conveying the latest advances as well as highlighting the limits of our current understanding.
In The Accidental Universe renowned expositor Paul Davies grapples with the most fundamental questions of all. What is our purpose and the purpose of the universe? Are both an accident of nature? Paul Davies guides us through the mysterious coincidences underlying the structure and properties of the universe we inhabit. He sets out the intriguing hypothesis that the appearance of the universe and its properties are highly contrived. Paul Davies gives a survey of the range of apparently miraculous accidents of nature that have enabled the universe to evolve its familiar structure of atoms, stars, galaxies and life itself. This remarkable book concludes with an investigation of the anthropic principle, which postulates that much of what we observe around us is a consequence of the presence of observers in the universe. This thesis of a cosmic biological selection effect is fiercely debated among scientists and is here set out clearly for a general readership.
|
You may like...
Starry Messenger - Cosmic Perspectives…
Neil De Grasse Tyson
Paperback
Body and Cosmos - Studies in Early…
Toke Knudsen, Jacob Schmidt-Madsen, …
Hardcover
R3,809
Discovery Miles 38 090
HowExpert Guide to Astronomy - 101…
Howexpert, Ryan Thomas Kirby
Hardcover
R737
Discovery Miles 7 370
|