![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time > Cosmology & the universe
This 1985 book consists of essays reviewing progress or reporting original results in areas of the applications of gravity theory to which Professor Bonnor had contributed. In particular, the influence of his work in two important fields of interest to astonomers, physicists and mathematicians, galaxy formation and the study of axisymmetric solutions in general relativity, is well recognised. The essays on galaxies and astrophysical cosmology are related to Professor Bonnor's work on the treatment of perturbations of uniform cosmological models, while the essays on axisymmetric solutions reflect the concerns of his long series of papers on the subject, which began with generating techniques and went on to deal with interpretation of the solutions obtained. In addition there is a number of essays on other topics in gravity theory, including numerical work, mathematical cosmology and gravitational waves.
There are 'voids' obscuring all kinds of objects in the cosmos.Voids may be withinan object, or betweenan object and us. "Dark Nebulae, Dark Lanes, and Dust Lanes" looks out into the deep sky at those apparent darkregions in space, which are among the most compelling telescopic destinations for amateur observers.One famous example is Barnard's dark nebulae - those striking dark clouds set against the background of stars in the Milky Way. But there are countless other less well knownexamples.These dark regions are often ignored altogether or commented upon onlybriefly in astronomy books, and it is all too easy to overlook the treasure trove they offer the observer. "Dark Nebulae, Dark Lanes, and DustLanes" is a great source of practical information for observers.Such voids may be successfully observed using conventional observing methods, but they are often far better seen with technologies such as light-pollution filters, CCD video cameras, and image intensifiers. This book explains the optimal ways to observe each object in detail."
This 2006 book acknowledges the importance of identifying the most crucial science to be performed by the superb Hubble Telescope. With this goal in mind, the book presents a review of some of the most important open questions in astronomy. World experts examine topics ranging from extrasolar planets and star formation to supermassive black holes and the reionization of the universe. Special emphasis is placed on what astronomical observations should be carried out during the next few years to enable breakthroughs in our understanding of a complex and dynamic universe. In particular, the reviewers attempt to identify those topics to which the Hubble Space Telescope can uniquely contribute. The special emphasis on future research makes this book an essential resource for both professional researchers and graduate students in astronomy and astrophysics.
Do you sometimes wonder why the sky at dusk is filled with color, or how the moon controls the tides? Why do stars twinkle and planets don't? Interested in refining your star-gazing techniques? You don't need any special equipment to marvel at the beauty of the universe, and Night Has a Thousand Eyes will place the cosmic within your grasp. If you want to know why werewolves only come out at night, are curious about twilight, the seasons and their causes, our solar system, light and darkness, weather, stars and latitude, the moon, light pollution, and the planets, this is the book for you. Filled with science and lore, with references to myths, legends, and "high" and popular culture, this "naked-eye" guide -- no telescope required -- demystifies the celestial in accessible, instructive, and entertaining prose. Night Has a Thousand Eyes is the perfect resource for amateur astronomers and meteorologists of all ages -- city, suburban, and country folk alike -- who pause to enjoy sunsets and identify constellations on a starry night. Illustrated throughout with photographs, sky charts, and diagrams.
What are the current ideas describing the large-scale structure of the Universe? How do they relate to the observed facts? This book looks at both the strengths and weaknesses of the current big-bang model in explaining certain puzzling data. It arises from an international conference that brought together many of the world's leading players in cosmology. In addition to presenting individual talks, the proceedings of the resulting discussions are also recorded. Giving a comprehensive coverage of the expanding field of cosmology, this text will be valuable for graduate students and researchers in cosmology and theoretical astrophysics.
Originally published in 1956, this book was based on a brief course of lectures delivered during the summer term of 1954 at the Dublin Institute for Advanced Studies. It provides a concise interpretation of universe expansion and contemporary theories relating to it.
Spectacular observational breakthroughs, particularly by the WMAP satellite, have led to a new epoch of CMB science long after its original discovery. Taking a physical approach, the authors of this volume, which was first published in 2006, probe the problem of the 'darkness' of the Universe: the origin and evolution of dark energy and matter in the cosmos. Starting with the observational background of modern cosmology, they provide an accessible review of this fascinating yet complex subject. Topics discussed include the kinetics of the electromagnetic radiation in the Universe, the ionization history of cosmic plamas, the origin of primordial perturbations in light of the inflation paradigm, and the formation of anisotropy and polarization of the CMB. This fascinating review will be valuable to advanced students and researchers in cosmology.
Following on from a previous volume on Special Relativity, Andrew Steane's second volume on General Relativity and Cosmology is aimed at advanced undergraduate or graduate students undertaking a physics course, and encourages them to expand their knowledge of Special Relativity. Beginning with a survey of the main ideas, the textbook goes on to give the methodological foundations to enable a working understanding of astronomy and gravitational waves (linearized approximation, differential geometry, covariant differentiation, physics in curved spacetime). It covers the generic properties of horizons and black holes, including Hawking radiation, introduces the key concepts in cosmology and gives a grounding in classical field theory, including spinors and the Dirac equation, and a Lagrangian approach to General Relativity. The textbook is designed for self-study and is aimed throughout at clarity, physical insight, and simplicity, presenting explanations and derivations in full, and providing many explicit examples.
The chemical composition of the Universe has evolved over billions of years. A host of astrophysical processes and observations must be understood in order to explain why celestial objects have the chemical compositions observed. Originally published in 2004, this book contains the lectures delivered at the XIII Canary Islands Winter School of Astrophysics, which was dedicated to reviewing current knowledge about the origin and evolution of the chemical elements in the Universe. Written by seven prestigious astrophysics researchers, it covers cosmological and stellar nucleosynthesis, abundance determinations in stars and ionised nebulae, chemical composition of nearby and distant galaxies, and models of chemical evolution of galaxies and intracluster medium. This is a timely review of developments in cosmochemistry over the last decade.
Professor Herman Bondi, one of the proponents of the Steady State Theory, presented this volume as an account that would establish cosmology as a distinct branch of physics. First published in 1952, just a few years after the term 'the Big Bang' was coined, it represents an important stage in the development of cosmology. With detailed discussions of different theories including Newtonian cosmology, relativistic cosmology and kinematic relativity, it gives a remarkable insight into scientific thought at this crucial time. It will be most useful to anyone with an interest in the history of science or the progression of scientific ideas.
The standard cosmological picture of our Universe emerging from a 'big bang' leaves open many fundamental questions which string theory, a unified theory of all forces of nature, should be able to answer. This 2007 text was the first dedicated to string cosmology, and contains a pedagogical introduction to the basic notions of the subject. It describes the possible scenarios suggested by string theory for the primordial evolution of our Universe. It discusses the main phenomenological consequences of these scenarios, stresses their differences from each other, and compares them to the more conventional models of inflation. The book summarises over 15 years of research in this field and introduces advances. It is self-contained, so it can be read by astrophysicists with no knowledge of string theory, and high-energy physicists with little understanding of cosmology. Detailed and explicit derivations of all the results presented provide a deeper appreciation of the subject.
A geologist and fellow of the Royal Astronomical Society, Isaac Roberts (1829-1904) made significant contributions to the photography of star-clusters and nebulae. By championing reflecting rather than refracting telescopes, Roberts was able to perceive previously unnoticed star-clusters, and was the first person to identify the spiral shape of the Great Andromeda Nebula. Roberts' use of a telescope for photographing stars, and a long exposure time, provided greater definition of stellar phenomena than previously used hand-drawings. Although Roberts' conclusions about the nature of the nebulae he photographed were not always correct, the book is significant for the possibilities it suggests for nebular photography. Published in 1893 and 1899, the two-volume Photographs of Stars represents the summation of his work with his assistant W. S. Franks at his observatory in Crowborough, Sussex. Volume 2 contains 29 plates of stars, and his conclusions about their origins and nature.
Black holes and gravitational radiation are two of the most dramatic predictions of general relativity. The quest for rotating black holes - discovered by Roy P. Kerr as exact solutions to the Einstein equations - is one of the most exciting challenges facing physicists and astronomers. Gravitational Radiation, Luminous Black Holes and Gamma-Ray Burst Supernovae takes the reader through the theory of gravitational radiation and rotating black holes, and the phenomenology of GRB-supernovae. Topics covered include Kerr black holes and the frame-dragging of spacetime, luminous black holes, compact tori around black holes, and black-hole spin interactions. It concludes with a discussion of prospects for gravitational-wave detections of a long-duration burst in gravitational-waves as a method of choice for identifying Kerr black holes in the Universe. This book is ideal for a special topics graduate course on gravitational-wave astronomy and as an introduction to those interested in this contemporary development in physics.
A geologist and fellow of the Royal Astronomical Society, Isaac Roberts (1829 1904) made significant contributions to the photography of star-clusters and nebulae. By championing reflecting rather than refracting telescopes, Roberts was able to perceive previously unnoticed star-clusters, and was the first to identify the spiral shape of the Great Andromeda Nebula. Roberts' use of a telescope for photographing stars, and a long exposure time, provided greater definition of stellar phenomena than previously used hand-drawings. Although Roberts' conclusions about the nature of the nebulae he photographed were not always correct, the book is significant for the possibilities it suggests for nebular photography. Published in London in 1893 and 1899, the two-volume Photographs of Stars represents the summation of his work with his assistant W. S. Franks at his observatory in Crowborough, Sussex. Volume 1 contains 51 collotype plates of stars, and descriptions of his instruments and methods.
The theory of relativity describes the laws of physics in a given space-time. However, a physical theory must provide observational predictions expressed in terms of measurements, which are the outcome of practical experiments and observations. Ideal for readers with a mathematical background and a basic knowledge of relativity, this book will help readers understand the physics behind the mathematical formalism of the theory of relativity. It explores the informative power of the theory of relativity, and highlights its uses in space physics, astrophysics and cosmology. Readers are given the tools to pick out from the mathematical formalism those quantities that have physical meaning and which can therefore be the result of a measurement. The book considers the complications that arise through the interpretation of a measurement, which is dependent on the observer who performs it. Specific examples of this are given to highlight the awkwardness of the problem.
The twentieth century witnessed some remarkable discoveries: the 1917 publication of Einstein's general theory of relativity, Carnegie astronomer Edwin Hubble's 1929 discovery of the expansion of the universe, evidence for the existence of dark matter, and the discovery of a mysterious dark energy, which is causing the universe to speed up its expansion. This comprehensive volume reviews the theory and measurement of various parameters related to the evolution of the universe. Topics include inflation, string theory, the history of cosmology in the context of measurements being made of the Hubble constant, the matter density, and dark energy, including observational results from the Sloan, Digital Sky Survey, Keck, Magellan, cosmic microwave background experiments, Hubble space telescope and Chandra. With chapters by leading authorities in the field, this book is a valuable resource for graduate students and professional research astronomers.
Observational cosmology, with the help of large telescopes, combined with the capabilities of the Hubble Space Telescope and other space missions, allow astronomers to directly observe galaxy assembly over cosmic time. These developments demand that scientists are trained in the methods suited to the study of distant galaxies. This volume contains the lectures delivered at the XI Canary Islands Winter School of Astrophysics, reviewing both scientific results and the main questions in the field. It covers the study of normal galaxies, distant galaxies, and studies based on far-infrared diagnostics, it reviews quasar absorption lines, and the properties of nearby galaxies. Each chapter is written by a world expert in the field, making the book an essential reference for all astronomers working in the field of high-redshift galaxies.
When Edwin Dunkin (1821 1898) published this book in 1869, it was received with widespread acclaim by both professional astronomers and the reading public. Dunkin, a distinguished astronomer who published widely in academic journals and later served in the prestigious roles of Deputy Astronomer Royal (1881 1884) and President of the Royal Astronomical Society (1880), is still best known for this work of popular astronomy that has functioned as an indispensable tool for generations of amateurs. Chapter 1 derives from Dunkin's famous 'The Midnight Sky at London' articles, previously published in Leisure Hour, which describe the London midnight sky during each month of the year. Other chapters cover the Southern Hemisphere, the constellations, the properties of fixed stars, the solar system, and meteors and shooting stars. The volume is well illustrated with star maps and engravings. It is a classic work of popular nineteenth-century astronomical writing.
Dark energy, the mysterious cause of the accelerating expansion of the universe, is one of the most important fields of research in astrophysics and cosmology today. Introducing the theoretical ideas, observational methods and results, this textbook is ideally suited to graduate courses on dark energy, and will also supplement advanced cosmology courses. Providing a thorough introduction to this exciting field, the textbook covers the cosmological constant, quintessence, k-essence, perfect fluid models, extra-dimensional models, and modified gravity. Observational research is reviewed, from the cosmic microwave background to baryon acoustic oscillations, weak lensing and cluster abundances. Every chapter ends with problems, with full solutions provided, and any calculations are worked through step-by-step.
Polymath Alexander von Humboldt (1769 1859), a self-described 'scientific traveller', was one of the most respected scientists of his time. Humboldt's wanderlust led him across Europe and to South America, Mexico, the U.S., and Russia, and his voyages and observations resulted in the discovery of many species previously unknown to Europeans. Originating as lectures delivered in Berlin and Paris (1827 1828), his multi-volume Cosmos: Sketch of a Physical Description of the Universe (1845 1860) represented the culmination of his lifelong interest in understanding the physical world. As Humboldt writes, 'I ever desired to discern physical phenomena in their widest mutual connection, and to comprehend Nature as a whole, animated and moved by inward forces.' Volume 1 (1846) investigates celestial and terrestrial phenomena, from nebulae to the temperature of the earth, as well as 'organic life'. Throughout, he stresses the method of, and limits to, describing the universe's physical nature.
Polymath Alexander von Humboldt (1769 1859), a self-described 'scientific traveller', was one of the most respected scientists of his time. Humboldt's wanderlust led him across Europe and to South America, Mexico, the U.S. and Russia, and his voyages and observations resulted in the discovery of many species previously unknown to Europeans. Originating as lectures delivered in Berlin and Paris (1827 1828), his two-volume Cosmos: Sketch of a Physical Description of the Universe (1845 1860) represented the culmination of his lifelong interest in understanding the physical world. As Humboldt writes, 'I ever desired to discern physical phenomena in their widest mutual connection, and to comprehend Nature as a whole, animated and moved by inward forces'. Volume 2 (1848) reviews poetic descriptions of nature as well as landscape painting from antiquity through to modernity, before using the same time-span to examine a 'History of the Physical Contemplation of the Universe'.
#1 "NEW YORK TIMES" BESTSELLER
Most astronomers and physicists now believe that the matter content of the Universe is dominated by dark matter: hypothetical particles which interact with normal matter primarily through the force of gravity. Though invisible to current direct detection methods, dark matter can explain a variety of astronomical observations. This book describes how this theory has developed over the past 75 years, and why it is now a central feature of extragalactic astronomy and cosmology. Current attempts to directly detect dark matter locally are discussed, together with the implications for particle physics. The author comments on the sociology of these developments, demonstrating how and why scientists work and interact. Modified Newtonian Dynamics (MOND), the leading alternative to this theory, is also presented. This fascinating overview will interest cosmologists, astronomers and particle physicists. Mathematics is kept to a minimum, so the book can be understood by non-specialists.
'Dark energy' is the name given to the unknown cause of the Universe's accelerating expansion, which is one of the most significant and surprising discoveries in recent cosmology. Understanding this enigmatic ingredient of the Universe and its gravitational effects is a very active, and growing, field of research. In this volume, twelve world-leading authorities on the subject present the basic theoretical models that could explain dark energy, and the observational and experimental techniques employed to measure it. Covering the topic from its origin, through recent developments, to its future perspectives, this book provides a complete and comprehensive introduction to dark energy for a range of readers. It is ideal for physics graduate students who have just entered the field and researchers seeking an authoritative reference on the topic.
In recent years cosmologists have advanced from largely qualitative models of the Universe to precision modelling using Bayesian methods, in order to determine the properties of the Universe to high accuracy. This timely book is the only comprehensive introduction to the use of Bayesian methods in cosmological studies, and is an essential reference for graduate students and researchers in cosmology, astrophysics and applied statistics. The first part of the book focuses on methodology, setting the basic foundations and giving a detailed description of techniques. It covers topics including the estimation of parameters, Bayesian model comparison, and separation of signals. The second part explores a diverse range of applications, from the detection of astronomical sources (including through gravitational waves), to cosmic microwave background analysis and the quantification and classification of galaxy properties. Contributions from 24 highly regarded cosmologists and statisticians make this an authoritative guide to the subject. |
You may like...
The Disordered Cosmos - A Journey Into…
Chanda Prescod-Weinstein
Hardcover
R548
Discovery Miles 5 480
A Brief History Of Time - From Big Bang…
Stephen Hawking
Paperback
(4)
|