![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Astronomy, space & time > Cosmology & the universe
Physical phenomena in astrophysics and cosmology involve gravitational collapse in a fundamental way. The final fate of a massive star when it collapses under its own gravity at the end of its life cycle is one of the most important questions in gravitation theory and relativistic astrophysics, and is the foundation of black hole physics. General relativity predicts that continual gravitational collapse gives rise to a space-time singularity. Quantum gravity may take over in such regimes to resolve the classical space-time singularity. This book investigates these issues, and shows how the visible ultra-dense regions arise naturally and generically as an outcome of dynamical gravitational collapse. It will be of interest to graduate students and academic researchers in gravitation physics, fundamental physics, astrophysics, and cosmology. It includes a detailed review of recent research into gravitational collapse, and several examples of collapse models are investigated in detail.
In antiquity living beings are inextricably linked to the cosmos as a whole. Ancient biology and cosmology depend upon one another and therefore a complete understanding of one requires a full account of the other. This volume addresses many philosophical issues that arise from this double relation. Does the cosmos have a soul of its own? Why? Is either of these two disciplines more basic than the other, or are they at the same explanatory level? What is the relationship between living things and the cosmos as a whole? If the cosmos is an animate intelligent being, what is the nature of its thoughts and actions? How do these relate to our own thoughts and actions? Do they pose a threat to our autonomy as subjects and agents? And what is the place of zoogony in cosmogony? A distinguished international team of contributors provides original essays discussing these questions.
The goal of IAU Symposium 359 on 'Galaxy Evolution and Feedback across Different Environments' (GALFEED) was to bring together the active galactic nuclei (AGN) and galaxy evolution scientific communities. The AGN phase occurs in most galaxies and critically influences their evolution, so it is important to study the two processes together and for researchers, in both topics, to learn from one another. They ask key questions such as: How do galaxies acquire their gas and how efficiently is it transformed into stars? How is the supermassive black hole in a galaxy center fuelled to become an AGN? What is the main physical mechanism that quenches star formation? How powerful are the stellar and AGN feedback processes in regulating galaxy evolution? And what is the role of the environment on galaxy evolution and AGN triggering? Astronomers engage in these discussions spanning from early galaxies to the present day.
This book describes how and why the early modern period witnessed the marginalisation of astrology in Western natural philosophy, and the re-adoption of the cosmological view of the existence of a plurality of worlds in the universe, allowing the possibility of extraterrestrial life. Founded in the mid-1990s, the discipline of astrobiology combines the search for extraterrestrial life with the study of terrestrial biology - especially its origins, its evolution and its presence in extreme environments. This book offers a history of astrobiology's attempts to understand the nature of life in a larger cosmological context. Specifically, it describes the shift of early modern cosmology from a paradigm of celestial influence to one of celestial inhabitation. Although these trends are regarded as consequences of Copernican cosmology, and hallmarks of a modern world view, they are usually addressed separately in the historical literature. Unlike others, this book takes a broad approach that examines the relationship of the two. From Influence to Inhabitation will benefit both historians of astrology and historians of the extraterrestrial life debate, an audience which includes researchers and advanced students studying the history and philosophy of astrobiology. It will also appeal to historians of natural philosophy, science, astronomy and theology in the early modern period.
Bayesian methods are being increasingly employed in many different areas of research in the physical sciences. In astrophysics, models are used to make predictions to be compared to observations. These observations offer information that is incomplete and uncertain, so the comparison has to be pursued by following a probabilistic approach. With contributions from leading experts, this volume covers the foundations of Bayesian inference, a description of computational methods, and recent results from their application to areas such as exoplanet detection and characterisation, image reconstruction, and cosmology. It appeals to both young researchers seeking to learn about Bayesian methods as well as to astronomers wishing to incorporate these approaches in their research areas. It provides the next generation of researchers with the tools of modern data analysis that are already becoming standard in current astrophysical research.
An astonishing exploration of planet formation and the origins of life by one of the world's most innovative planetary geologists. In 1959, the Soviet probe Luna 3 took the first photos of the far side of the moon. Even in their poor resolution, the images stunned scientists: the far side is an enormous mountainous expanse, not the vast lava-plains seen from Earth. Subsequent missions have confirmed this in much greater detail. How could this be, and what might it tell us about our own place in the universe? As it turns out, quite a lot. Fourteen billion years ago, the universe exploded into being, creating galaxies and stars. Planets formed out of the leftover dust and gas that coalesced into larger and larger bodies orbiting around each star. In a sort of heavenly survival of the fittest, planetary bodies smashed into each other until solar systems emerged. Curiously, instead of being relatively similar in terms of composition, the planets in our solar system, and the comets, asteroids, satellites and rings, are bewitchingly distinct. So, too, the halves of our moon. In When the Earth Had Two Moons, esteemed planetary geologist Erik Asphaug takes us on an exhilarating tour through the farthest reaches of time and our galaxy to find out why. Beautifully written and provocatively argued, When the Earth Had Two Moons is not only a mind-blowing astronomical tour but a profound inquiry into the nature of life here-and billions of miles from home.
The Cosmic Microwave Background (CMB), the radiation left over from the Big Bang, is arguably the most important topic in modern cosmology. Its theory and observation have revolutionized cosmology from an order-of-magnitude science to a precision science. This graduate textbook describes CMB physics from first principles in a detailed yet pedagogical way, assuming only that the reader has a working knowledge of General Relativity. Among the changes in this second edition are new chapters on non-Gaussianities in the CMB and on large-scale structure, and extended discussions on lensing and baryon acoustic oscillations, topics that have developed significantly in the last decade. Discussions of CMB experiments have been updated from WMAP data to the new Planck data. The CMB success story in estimating cosmological parameters is then treated in detail, conveying the beauty of the interplay of theoretical understanding and precise experimental measurements.
Der Wunsch nach einem Verstandnis von Einsteins Theorien ist unter naturwissenschaftlich Interessierten weit verbreitet - und bleibt doch meist unerfullt. Dieses Buch bietet nun eine einzigartige neue Chance: Mit anschaulichen Gedankenexperimenten, exakten Abbildungen, treffenden Analogien und mit strikt auf Mittelschulmathematik beschrankten Rechenschritten werden Sie behutsam in die immer wieder faszinierende Welt der Relativitatstheorien gefuhrt. Sachlich, grundlich und dennoch faszinierend werden die Zeitdehnung, das Zwillingsparadoxon, Schwarze Locher oder die Rotverschiebung des Lichts dargestellt, daneben viele weitere relativistische Effekte, die Ihnen hier erstmals mit ganz einfachen mathematischen Werkzeugen zuganglich gemacht werden. ..". das Buch ist sehr empfehlenswert: Der gesamte Text ist klar, ausfuhrlich und verstandlich geschrieben." "Ein ausserst gelungenes Buch also, das halt, was es im Untertitel verspricht ..." Stephan Edinger, Sterne und Weltraum, Mai 2008"
Following a long-term international collaboration between leaders in cosmology and the philosophy of science, this volume addresses foundational questions at the limit of science across these disciplines, questions raised by observational and theoretical progress in modern cosmology. Space missions have mapped the Universe up to its early instants, opening up questions on what came before the Big Bang, the nature of space and time, and the quantum origin of the Universe. As the foundational volume of an emerging academic discipline, experts from relevant fields lay out the fundamental problems of contemporary cosmology and explore the routes toward finding possible solutions. Written for graduates and researchers in physics and philosophy, particular efforts are made to inform academics from other fields, as well as the educated public, who wish to understand our modern vision of the Universe, related philosophical questions, and the significant impacts on scientific methodology.
Unlike most traditional introductory textbooks on relativity and cosmology that answer questions like "Does accelerated expansion pull our bodies apart?", "Does the presence of dark matter affect the classical tests of general relativity?" in a qualitative manner, the present text is intended as a foundation, enabling students to read and understand the textbooks and many of the scientific papers on the subject. And, above all, the readers are taught and encouraged to do their own calculations, check the numbers and answer the above and other questions regarding the most exciting discoveries and theoretical developments in general relativistic cosmology, which have occurred since the early 1980s. In comparison to these intellectual benefits the text is short. In fact, its brevity without neglect of scope or mathematical accessibility of key points is rather unique. The authors connect the necessary mathematical concepts and their reward, i.e. the understanding of an important piece of modern physics, along the shortest path. The unavoidable mathematical concepts and tools are presented in as straightforward manner as possible. Even though the mathematics is not very difficult, it certainly is beneficial to know some statistical thermodynamics as well as some quantum mechanics. Thus the text is suitable for the upper undergraduate curriculum.
Winner of the 2019 Whirling Prize "Strong on science but just this side of poetry." -Nature A beautifully illustrated exploration of the principles, laws, and wonders that rule our universe, our world, and our daily lives, from the New York Times bestselling creator of Lost in Translation Have you ever found yourself wondering what we might have in common with stars, or why the Moon never leaves us? Thinking about the precise dancing of planets, the passing of time, or the nature of natural things? Our world is full of unshakable mystery, and although we live in a civilization more complicated than ever, there is simplicity and reassurance to be found in knowing how and why. From the New York Times bestselling creator of Lost in Translation, Eating the Sun is a delicately existential, beautifully illustrated, and welcoming exploration of the universe-one that examines and marvels at the astonishing principles, laws, and phenomena that we exist alongside, that we sit within. "[A] lyrical and luminous celebration of science and our consanguinity with the universe. . . . Playful and poignant." -Brain Pickings
"Between Copernicus and Galileo" is the story of Christoph Clavius,
the Jesuit astronomer and teacher whose work helped set the
standards by which Galileo's famous claims appeared so radical, and
whose teachings guided the intellectual and scientific agenda of
the Church in the central years of the Scientific Revolution.
Numerical relativity has emerged as the key tool to model gravitational waves - recently detected for the first time - that are emitted when black holes or neutron stars collide. This book provides a pedagogical, accessible, and concise introduction to the subject. Relying heavily on analogies with Newtonian gravity, scalar fields and electromagnetic fields, it introduces key concepts of numerical relativity in a context familiar to readers without prior expertise in general relativity. Readers can explore these concepts by working through numerous exercises, and can see them 'in action' by experimenting with the accompanying Python sample codes, and so develop familiarity with many techniques commonly employed by publicly available numerical relativity codes. This is an attractive, student-friendly resource for short courses on numerical relativity, as well as providing supplementary reading for courses on general relativity and computational physics.
These selections from "Le systeme du monde," the classic ten-volume history of the physical sciences written by the great French physicist Pierre Duhem (1861-1916), focus on cosmology, Duhem's greatest interest. By reconsidering the work of such Arab and Christian scholars as Averroes, Avicenna, Gregory of Rimini, Albert of Saxony, Nicole Oresme, Duns Scotus, and William of Occam, Duhem demonstrated the sophistication of medieval science and cosmology.
Knowledge of the structure of the cosmos, Plato suggests, is important in organizing a human community which aims at happiness. This book investigates this theme in Plato's later works, the Timaeus, Statesman, and Laws. Dominic J. O'Meara proposes fresh readings of these texts, starting from the religious festivals and technical and artistic skills in the context of which Plato elaborates his cosmological and political theories, for example the Greek architect's use of models as applied by Plato in describing the making of the world. O'Meara gives an account of the model of which Plato's world is an image; of the mathematics used in producing the world; and of the relation between the cosmic model and the political science and legislation involved in designing a model state in the Laws. Non-specialist scholars and students will be able to access and profit from the book.
If scientists can't touch the Sun, how do they know what it's made of? And if we can't see black holes, how can we be confident they exist? Gravitational physicist David Garfinkle and his brother, science fiction writer Richard Garfinkle, tackle these questions and more in "Three Steps to the Universe", a tour through some of the most complex phenomena in the cosmos and an accessible exploration of how scientists acquire knowledge about the universe through observation, indirect detection, and theory. From the Sun and black holes, the authors lead us further into the unknown, to the dark matter and energy that pervade our universe, where science teeters on the edge of theory and discovery. Returning from the depths of space, the final section of the book brings readers back down to Earth for a final look at the practice of science, ending with a practical guide to discerning real science from pseudoscience among the cacophony of print and online scientific sources. "Three Steps to the Universe" will reward anyone interested in learning more about the universe around us and shows how scientists uncover its mysteries.
We've all asked ourselves the question. It's impossible to look up at the stars and NOT think about it: Are we alone in the universe? Books, movies and television shows proliferate that attempt to answer this question and explore it. In OUT THERE Space.com senior writer Dr. Michael Wall treats that question as merely the beginning, touching off a wild ride of exploration into the final frontier. He considers, for instance, the myriad of questions that would arise once we do discover life beyond Earth (an eventuality which, top NASA officials told Wall, is only drawing closer). What would the first aliens we meet look like? Would they be little green men or mere microbes? Would they be found on a planet in our own solar system or orbiting a star far, far away? Would they intend to harm us, and if so, how might they do it? And might they already have visited? OUT THERE is arranged in a simple question-and-answer format. The answers are delivered in Dr. Wall's informal but informative style, which mixes in a healthy dose of humor and pop culture to make big ideas easier to swallow. Dr. Wall covers questions far beyond alien life, venturing into astronomy, physics, and the practical realities of what long-term life might be like for we mere humans in outer space, such as the idea of lunar colonies, and even economic implications. Readers won't just be hearing from Dr. Wall. As a longtime science journalist--whose work at Space.com is syndicated in outlets from Scientific American to Fox News--he has assembled an impressive array of contacts to provide expert commentary. From a former NASA chief scientist to leading science educators like Neil DeGrasse Tyson and Bill Nye to would-be space traveler Elon Musk, Dr. Wall shares the insights of some of the leading lights in space exploration today, and shows how the next space age might be brighter than ever.
An extraordinary discovery has recently shaken the foundations of Cosmology and Particle Physics, sparking a scientific revolution that has profoundly modified our understanding of our Universe and that is still far from over. Pioneering astronomers in the 1920s and 1930s had already noticed suspicious anomalies in the motion of celestial bodies in distant galaxies and clusters of galaxies, but it wasn't until the late 20th century that the scientific community was confronted with an astonishing conclusion: the Universe is filled with an unknown, elusive substance that is fundamentally different from anything we have ever seen with our telescopes or measured in our laboratories. It is called dark matter, and it constitutes one of the most pressing challenges of modern science. In this book, aimed at the general reader with an interest in science, the author illustrates in non-technical terms, borrowing concepts and ideas from other branches of art and literature, the far-reaching implications of this discovery. It has led to a worldwide race to identify the nature of this mysterious form of matter. We may be about to witness a pivotal paradigm shift in Physics, as we set out to test the existence of dark matter particles with a wide array of experiments, including the Large Hadron Collider at CERN, as well as with a new generation of Astroparticle experiments underground and in space.
A student-friendly style, over 100 illustrations, and numerous exercises are brought together in this textbook for advanced undergraduate and beginning graduate students in physics and mathematics. Lewis Ryder develops the theory of general relativity in detail. Covering the core topics of black holes, gravitational radiation, and cosmology, he provides an overview of general relativity and its modern ramifications. The book contains chapters on gravitational radiation, cosmology, and connections between general relativity and the fundamental physics of the microworld. It explains the geometry of curved spaces and contains key solutions of Einstein's equations - the Schwarzschild and Kerr solutions. Mathematical calculations are worked out in detail, so students can develop an intuitive understanding of the subject, as well as learn how to perform calculations. The book also includes topics concerned with the relation between general relativity and other areas of fundamental physics. Selected solutions for instructors are available under Resources.
Lectures on Astrophysics provides an account of classic and contemporary aspects of astrophysics, with an emphasis on analytic calculations and physical understanding. It introduces fundamental topics in astrophysics, including the properties of single and binary stars, the phenomena associated with interstellar matter, and the structure of galaxies. Nobel Laureate Steven Weinberg combines exceptional physical insight with his gift for clear exposition to cover exciting recent developments and new results. Emphasizing theoretical results, and explaining their derivation and application, this book provides an invaluable resource for physics and astronomy students and researchers.
During the sixteenth and seventeenth centuries a radical change occurred in the patterns and the framework of European thought. In the wake of discoveries through the telescope and Copernican theory, the notion of an ordered cosmos of "fixed stars" gave way to that of a universe infinite in both time and space--with significant and far-reaching consequences for human thought. Alexandre Koyre interprets this revolution in terms of the change that occurred in our conception of the universe and our place in it and shows the primacy of this change in the development of the modern world.
Innovations in Nanoscience and Nanotechnology summarizes the state of the art in nano-sized materials. The authors focus on innovation aspects and highlight potentials for future developments and applications in health care, including pharmaceutics, dentistry, and cosmetics; information and communications; energy; and chemical engineering. The chapters are written by leading researchers in nanoscience, chemistry, pharmacy, biology, chemistry, physics, engineering, medicine, and social science. The authors come from a range of backgrounds including academia, industry, and national and international laboratories around the world. This book is ideally suited for researchers and students in chemistry, physics, biology, engineering, materials science, and medicine and is a useful guide for industrialists. It aims to provide inspiration for scientists, new ideas for developers and innovators in industry, and guidelines for toxicologists. It also provides guidelines for agencies and government authorities to establish safe working conditions.
The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis, their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and the statistical mechanics in the expanding Universe, before discussing the history of neutrinos in chronological order from the very early stages until today. This timely book will interest graduate students and researchers in astrophysics, cosmology and particle physics, who work with either a theoretical or experimental focus. |
![]() ![]() You may like...
Principles of Insect Pathology
Drion G. Boucias, Jacquelyn C. Pendland
Hardcover
R8,475
Discovery Miles 84 750
|