![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time > Cosmology & the universe
Unlike most traditional introductory textbooks on relativity and cosmology that answer questions like "Does accelerated expansion pull our bodies apart?", "Does the presence of dark matter affect the classical tests of general relativity?" in a qualitative manner, the present text is intended as a foundation, enabling students to read and understand the textbooks and many of the scientific papers on the subject. And, above all, the readers are taught and encouraged to do their own calculations, check the numbers and answer the above and other questions regarding the most exciting discoveries and theoretical developments in general relativistic cosmology, which have occurred since the early 1980s. In comparison to these intellectual benefits the text is short. In fact, its brevity without neglect of scope or mathematical accessibility of key points is rather unique. The authors connect the necessary mathematical concepts and their reward, i.e. the understanding of an important piece of modern physics, along the shortest path. The unavoidable mathematical concepts and tools are presented in as straightforward manner as possible. Even though the mathematics is not very difficult, it certainly is beneficial to know some statistical thermodynamics as well as some quantum mechanics. Thus the text is suitable for the upper undergraduate curriculum.
How did it all begin? Where is it all going? A little over a century ago, a young Albert Einstein presented his general theory of relativity to the world and utterly transformed our understanding of the universe. His theory changed the way we think about space and time, revealed how our universe has been expanding from a hot dense state called the big bang and predicted black holes. WHERE THE UNIVERSE CAME FROM is a 13.8-billiion-year journey through the cosmos. Discover how Einstein's work explains why the cosmos is the way it is, why 95% of the universe is missing, how physicists go to extraordinary lengths to unlock gravity's secrets and how black holes could hold the key to a theory of everything. ABOUT THE SERIES New Scientist Instant Expert books are definitive and accessible entry points to the most important subjects in science; subjects that challenge, attract debate, invite controversy and engage the most enquiring minds. Designed for curious readers who want to know how things work and why, the Instant Expert series explores the topics that really matter and their impact on individuals, society, and the planet, translating the scientific complexities around us into language that's open to everyone, and putting new ideas and discoveries into perspective and context.
A scientific and globetrotting exploration of the physics experiments changing the ways we understand our universe. Why is the universe expanding? What is the nature of dark matter? Do other universes exist? In this timely and original book, science writer Anil Ananthaswamy embarks on a global journey to some of the world's most inhospitable and dramatic research sites to witness first-hand the audacious physics experiments conducted to answer profound questions about the nature of the universe. From the Atacama Desert in the Chilean Andes to the European Southern Observatory's Very Large Telescope on Mount Paranal to deep inside an abandoned iron mine in Minnesota and to the East Antarctic Ice Sheet, Ananthaswamy weaves together stories about the people and places at the heart of this cosmological research. While explaining the immense questions that scientists are trying to answer, Ananthaswamy provides an accessible and unique portrait of the universe and our quest to understand it. An atmospheric, engaging and illuminating read, The Edge of Physics depicts science as a human process and brings cosmology with all its rarefied concepts down to earth. ***PRAISE FOR THE EDGE OF PHYSICS*** 'A travelogue that celebrates the blood, sweat and tears that drive our understanding of the universe.' Guardian 'An excellent book. The author has a great knack of making difficult subjects comprehensible. I thoroughly enjoyed it.' Sir Patrick Moore 'A remarkable narrative that combines fundamental physics with high adventure.' New Scientist 'The ultimate physics-adventure travelogue... brilliant.' Physics World 'A grand tour of modern day cosmology's sacred places... evocative... engaging... refreshing... a taste of science in the heroic mode.' BBC Sky at Night 'Clean, elegant prose, humming with interest.' Robert MacFarlene 'An accomplished and timely overview of modern cosmology and particle astrophysics.' Nature
What are the mysterious numbers that unlock the secrets of the universe? In Fantastic Numbers and Where to Find Them, leading theoretical physicist and YouTube star Antonio Padilla takes us on an irreverent cosmic tour of nine of the most extraordinary numbers in physics. These include Graham's number, which is so large that if you thought about it in the wrong way, your head would collapse into a singularity; TREE(3), whose finite value could never be reached before the universe reset itself; and 10^{-120}, which measures the desperately unlikely balance of energy the universe needs to exist. . . Leading us down the rabbit hole to the inner workings of reality, Padilla demonstrates how these unusual numbers are the key to unlocking such mind-bending phenomena as black holes, entropy and the problem of the cosmological constant, which shows that our two best ways of understanding the universe contradict one another. Combining cutting-edge science with an entertaining cosmic quest, Fantastic Numbers and Where to Find Them is an electrifying, head-twisting guide to the most fundamental truths of the universe.
During the sixteenth and seventeenth centuries a radical change occurred in the patterns and the framework of European thought. In the wake of discoveries through the telescope and Copernican theory, the notion of an ordered cosmos of "fixed stars" gave way to that of a universe infinite in both time and space--with significant and far-reaching consequences for human thought. Alexandre Koyre interprets this revolution in terms of the change that occurred in our conception of the universe and our place in it and shows the primacy of this change in the development of the modern world.
A student-friendly style, over 100 illustrations, and numerous exercises are brought together in this textbook for advanced undergraduate and beginning graduate students in physics and mathematics. Lewis Ryder develops the theory of general relativity in detail. Covering the core topics of black holes, gravitational radiation, and cosmology, he provides an overview of general relativity and its modern ramifications. The book contains chapters on gravitational radiation, cosmology, and connections between general relativity and the fundamental physics of the microworld. It explains the geometry of curved spaces and contains key solutions of Einstein's equations - the Schwarzschild and Kerr solutions. Mathematical calculations are worked out in detail, so students can develop an intuitive understanding of the subject, as well as learn how to perform calculations. The book also includes topics concerned with the relation between general relativity and other areas of fundamental physics. Selected solutions for instructors are available under Resources.
In the final book of his astonishing career, Carl Sagan brilliantly examines the burning questions of our lives, our world, and the universe around us. These luminous, entertaining essays travel both the vastness of the cosmos and the intimacy of the human mind, posing such fascinating questions as how did the universe originate and how will it end, and how can we meld science and compassion to meet the challenges of the coming century? Here, too, is a rare, private glimpse of Sagan’s thoughts about love, death, and God as he struggled with fatal disease. Ever forward-looking and vibrant with the sparkle of his unquenchable curiosity, Billions & Billions is a testament to one of the great scientific minds of our day.
Beyond Einstein: Perspectives on Geometry, Gravitation, and Cosmology explores the rich interplay between mathematical and physical ideas by studying the interactions of major actors and the roles of important research communities over the course of the last century.
Lectures on Astrophysics provides an account of classic and contemporary aspects of astrophysics, with an emphasis on analytic calculations and physical understanding. It introduces fundamental topics in astrophysics, including the properties of single and binary stars, the phenomena associated with interstellar matter, and the structure of galaxies. Nobel Laureate Steven Weinberg combines exceptional physical insight with his gift for clear exposition to cover exciting recent developments and new results. Emphasizing theoretical results, and explaining their derivation and application, this book provides an invaluable resource for physics and astronomy students and researchers.
Professor Sir Roger Penrose's work, spanning fifty years of science, with over five thousand pages and more than three hundred papers, has been collected together for the first time and arranged chronologically over six volumes, each with an introduction from the author. Where relevant, individual papers also come with specific introductions or notes. Developing ideas sketched in the first volume, twistor theory is now applied to genuine issues of physics, and there are the beginnings of twistor diagram theory (an analogue of Feynman Diagrams). This collection includes joint papers with Stephen Hawking, and uncovers certain properties of black holes. The idea of cosmic censorship is also first proposed. Along completely different lines, the first methods of aperiodic tiling for the Euclidean plane that come to be known as Penrose tiles are described. This volume also contains Penrose's three prize-winning essays for the Gravity Foundation (two second places with both Ezra Newman and Steven Hawking, and a solo first place for 'The Non-linear graviton').
Present-day elliptical, spiral and irregular galaxies are large systems made of stars, gas and dark matter. Their properties result from a variety of physical processes that have occurred during the nearly fourteen billion years since the Big Bang. This comprehensive textbook, which bridges the gap between introductory and specialized texts, explains the key physical processes of galaxy formation, from the cosmological recombination of primordial gas to the evolution of the different galaxies that we observe in the Universe today. In a logical sequence, the book introduces cosmology, illustrates the properties of galaxies in the present-day Universe, then explains the physical processes behind galaxy formation in the cosmological context, taking into account the most recent developments in this field. The text ends on how to find distant galaxies with multi-wavelength observations, and how to extract the physical and evolutionary properties based on imaging and spectroscopic data.
The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis, their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and the statistical mechanics in the expanding Universe, before discussing the history of neutrinos in chronological order from the very early stages until today. This timely book will interest graduate students and researchers in astrophysics, cosmology and particle physics, who work with either a theoretical or experimental focus.
The past two decades have seen transformative advances in cosmology and string theory. Observations of the cosmic microwave background have revealed strong evidence for inflationary expansion in the very early universe, while new insights about compactifications of string theory have led to a deeper understanding of inflation in a framework that unifies quantum mechanics and general relativity. Written by two of the leading researchers in the field, this complete and accessible volume provides a modern treatment of inflationary cosmology and its connections to string theory and elementary particle theory. After an up-to-date experimental summary, the authors present the foundations of effective field theory, string theory, and string compactifications, setting the stage for a detailed examination of models of inflation in string theory. Three appendices contain background material in geometry and cosmological perturbation theory, making this a self-contained resource for graduate students and researchers in string theory, cosmology, and related fields.
For the past 20 years causality violations and superluminal motion have been the object of intensive study as physical and geometrical phenomena. This book compiles the results of its author and also reviews other work in the field. In particular, the following popular questions are addressed: Is causality protected by quantum divergence at the relevant Cauchy horizon? How much "exotic matter" would it take to create a time machine or a warp drive? What is the difference between a "discovered" time machine and a created one? Why does a time traveler fail to kill their grandfather? How should we define the speed of gravity and what is its magnitude?
Innovations in Nanoscience and Nanotechnology summarizes the state of the art in nano-sized materials. The authors focus on innovation aspects and highlight potentials for future developments and applications in health care, including pharmaceutics, dentistry, and cosmetics; information and communications; energy; and chemical engineering. The chapters are written by leading researchers in nanoscience, chemistry, pharmacy, biology, chemistry, physics, engineering, medicine, and social science. The authors come from a range of backgrounds including academia, industry, and national and international laboratories around the world. This book is ideally suited for researchers and students in chemistry, physics, biology, engineering, materials science, and medicine and is a useful guide for industrialists. It aims to provide inspiration for scientists, new ideas for developers and innovators in industry, and guidelines for toxicologists. It also provides guidelines for agencies and government authorities to establish safe working conditions.
Gamma-ray bursts (GRBs) are the most luminous explosions in the universe, which within seconds release energy comparable to what the Sun releases in its entire lifetime. The field of GRBs has developed rapidly and matured over the past decades. Written by a leading researcher, this text presents a thorough treatment of every aspect of the physics of GRBs. It starts with an overview of the field and an introduction to GRB phenomenology. After laying out the basics of relativity, relativistic shocks, and leptonic and hadronic radiation processes, the volume covers all topics related to GRBs, including a general theoretical framework, afterglow and prompt emission models, progenitor, central engine, multi-messenger aspects (cosmic rays, neutrinos, and gravitational waves), cosmological connections, and broader impacts on fundamental physics and astrobiology. It is suitable for advanced undergraduates, graduate students, and experienced researchers in the field of GRBs and high-energy astrophysics in general.
`Rich in scholarship-invaluable to scholars studying the first milennium AD; highly recommended.' Choice Eclipses and comets can now be precisely dated and are therefore an invaluable aid in checking the chronology of historical records. This study covers the whole world and provides a list of eclipses and comets century by century.
This introduction to automorphic forms on adelic groups G(A) emphasises the role of representation theory. The exposition is driven by examples, and collects and extends many results scattered throughout the literature, in particular the Langlands constant term formula for Eisenstein series on G(A) as well as the Casselman-Shalika formula for the p-adic spherical Whittaker function. This book also covers more advanced topics such as spherical Hecke algebras and automorphic L-functions. Many of these mathematical results have natural interpretations in string theory, and so some basic concepts of string theory are introduced with an emphasis on connections with automorphic forms. Throughout the book special attention is paid to small automorphic representations, which are of particular importance in string theory but are also of independent mathematical interest. Numerous open questions and conjectures, partially motivated by physics, are included to prompt the reader's own research.
In this thought-provoking book Kuppers, an internationally renowned physicist, philosopher and theoretical biologist, addresses a number of science's deepest questions: Can physics advance to the origin of all things and explain the unique phenomena of life, time and history? Are there unsolvable enigmas of the world? How did life originate? Is language a general phenomenon of Nature? What is time? Is it possible to express the history of the world in formulae? Where is science leading us? These and other provocative questions essential for a deeper understanding of the world are treated here in a refreshing and stimulating manner.
This book discusses the notion that quantum gravity may represent the "breakdown" of spacetime at extremely high energy scales. If spacetime does not exist at the fundamental level, then it has to be considered "emergent", in other words an effective structure, valid at low energy scales. The author develops a conception of emergence appropriate to effective theories in physics, and shows how it applies (or could apply) in various approaches to quantum gravity, including condensed matter approaches, discrete approaches, and loop quantum gravity.
This thesis describes in detail a search for weakly interacting massive particles as possible dark matter candidates, making use of so-called mono-jet events. It includes a detailed description of the run-1 system, important operational challenges, and the upgrade for run-2. The nature of dark matter, which accounts for roughly 25% of the energy-matter content of the universe, is one of the biggest open questions in fundamental science. The analysis is based on the full set of proton-proton collisions collected by the ATLAS experiment at the Large Hadron Collider at s = 8 TeV. Special attention is given to the experimental challenges and analysis techniques, as well as the overall scientific context beyond particle physics. The results complement those of non-collider experiments and yield some of the strongest exclusion bounds on parameters of dark matter models by the end of the Large Hadron Collider run-1. Details of the upgrade of the ATLAS Central Trigger for run-2 are also included.
This thesis presents several significant new results that shed light on two major puzzles of modern cosmology: the nature of inflation, the very early phase of the universe that is thought to have given rise to the large-scale structures that we observe today; and that of the current accelerated expansion. In particular, it develops a clean method for characterizing linear cosmological perturbations for general theories where gravity is modified and/or affected by a new component, called dark energy, responsible for the accelerated expansion. It proposes a new extension to what were long thought to be the most general scalar field theories devoid of instabilities, and demonstrates the robustness of the relation between the energy scale of inflation and the predicted amplitude of gravitational waves. Finally, it consolidates a set of consistency relations between correlation functions of the cosmological density field and investigates the phenomenological consequences of their potential violation. Presented in a clear, succinct and rigorous style, each of these original results is both profound and important and will leave a deep mark on the field.
This unique thesis covers all aspects of theories of gravity beyond Einstein's General Relativity, from setting up the equations that describe the evolution of perturbations, to determining the best-fitting parameters using constraints like the microwave background radiation, and ultimately to the later stages of structure formation using state-of-the-art N-body simulations and comparing them to observations of galaxies, clusters and other large-scale structures. This truly ground-breaking work puts the study of modified gravity models on the same footing as the standard model of cosmology. Since the discovery of the accelerating expansion of the Universe, marked by the awarding of the 2011 Nobel Prize in Physics, there has been a growing interest in understanding what drives that acceleration. One possible explanation lies in theories of gravity beyond Einstein's General Relativity. This thesis addresses all aspects of the problem, an approach that is crucial to avoiding potentially catastrophic biases in the interpretation of upcoming observational missions. |
You may like...
The Disordered Cosmos - A Journey Into…
Chanda Prescod-Weinstein
Hardcover
R548
Discovery Miles 5 480
Starry Messenger - Cosmic Perspectives…
Neil De Grasse Tyson
Paperback
A Brief History Of Time - From Big Bang…
Stephen Hawking
Paperback
(4)
|