![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Astronomy, space & time > Cosmology & the universe
Innovations in Nanoscience and Nanotechnology summarizes the state of the art in nano-sized materials. The authors focus on innovation aspects and highlight potentials for future developments and applications in health care, including pharmaceutics, dentistry, and cosmetics; information and communications; energy; and chemical engineering. The chapters are written by leading researchers in nanoscience, chemistry, pharmacy, biology, chemistry, physics, engineering, medicine, and social science. The authors come from a range of backgrounds including academia, industry, and national and international laboratories around the world. This book is ideally suited for researchers and students in chemistry, physics, biology, engineering, materials science, and medicine and is a useful guide for industrialists. It aims to provide inspiration for scientists, new ideas for developers and innovators in industry, and guidelines for toxicologists. It also provides guidelines for agencies and government authorities to establish safe working conditions.
The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis, their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and the statistical mechanics in the expanding Universe, before discussing the history of neutrinos in chronological order from the very early stages until today. This timely book will interest graduate students and researchers in astrophysics, cosmology and particle physics, who work with either a theoretical or experimental focus.
It is time for International Relations (IR) to join the relational revolution afoot in the natural and social sciences. To do so, more careful reflection is needed on cosmological assumptions in the sciences and also in the study and practice of international relations. In particular it is argued here that we need to pay careful attention to whether and how we think 'relationally'. Building a conversation between relational cosmology, developed in natural sciences, and critical social theory, this book seeks to develop a new perspective on how to think relationally in and around the study of IR. International Relations in a Relational Universe asks: What kind of cosmological background assumptions do we make as we tackle international relations today and where do our assumptions (about states, individuals, or the international) come from? And can we reorient our cosmological imaginations towards more relational understanding of the universe and what would this mean for the study and practice of international politics? The book argues that we live in a world without 'things', a world of processes and relations. It also suggests that we live in relations which exceed the boundaries of the human and the social, in planetary relations with plants and animals. Rethinking conceptual premises of IR, Kurki points towards a 'planetary politics' perspective within which we can reimagine IR as a field of study and also political practices, including the future of democracy.
The past two decades have seen transformative advances in cosmology and string theory. Observations of the cosmic microwave background have revealed strong evidence for inflationary expansion in the very early universe, while new insights about compactifications of string theory have led to a deeper understanding of inflation in a framework that unifies quantum mechanics and general relativity. Written by two of the leading researchers in the field, this complete and accessible volume provides a modern treatment of inflationary cosmology and its connections to string theory and elementary particle theory. After an up-to-date experimental summary, the authors present the foundations of effective field theory, string theory, and string compactifications, setting the stage for a detailed examination of models of inflation in string theory. Three appendices contain background material in geometry and cosmological perturbation theory, making this a self-contained resource for graduate students and researchers in string theory, cosmology, and related fields.
High time-resolution astrophysics (HTRA) involves measuring and studying astronomical phenomena on timescales of seconds to milliseconds. Although many areas of astronomy, such as X-ray astronomy and pulsar observations, have traditionally required high time-resolution studies, HTRA techniques are now being applied to optical, infrared and gamma-ray wavelength regimes, due to the development of high efficiency detectors and larger telescopes that can gather photons at a higher rate. With lectures from eminent scientists aimed at young researchers and postdoctorate students in observational astronomy and astrophysics, this volume gives a practical overview and introduction to the tools and techniques of HTRA. Just as multi-spectral observations of astrophysical phenomena are already yielding new scientific results, many astronomers are optimistic that exploring the time domain will open up an important new frontier in observational astronomy over the next decade.
"Multiverse" cosmologies imagine our universe as just one of a vast number of others. While this idea has captivated philosophy, religion, and literature for millennia, it is now being considered as a scientific hypothesis-with different models emerging from cosmology, quantum mechanics, and string theory. Beginning with ancient Atomist and Stoic philosophies, Mary-Jane Rubenstein links contemporary models of the multiverse to their forerunners and explores the reasons for their recent appearance. One concerns the so-called fine-tuning of the universe: nature's constants are so delicately calibrated that it seems they have been set just right to allow life to emerge. For some thinkers, these "fine-tunings" are evidence of the existence of God; for others, however, and for most physicists, "God" is an insufficient scientific explanation. Hence the allure of the multiverse: if all possible worlds exist somewhere, then like monkeys hammering out Shakespeare, one universe is bound to be suitable for life. Of course, this hypothesis replaces God with an equally baffling article of faith: the existence of universes beyond, before, or after our own, eternally generated yet forever inaccessible to observation or experiment. In their very efforts to sidestep metaphysics, theoretical physicists propose multiverse scenarios that collide with it and even produce counter-theological narratives. Far from invalidating multiverse hypotheses, Rubenstein argues, this interdisciplinary collision actually secures their scientific viability. We may therefore be witnessing a radical reconfiguration of physics, philosophy, and religion in the modern turn to the multiverse.
This introduction to automorphic forms on adelic groups G(A) emphasises the role of representation theory. The exposition is driven by examples, and collects and extends many results scattered throughout the literature, in particular the Langlands constant term formula for Eisenstein series on G(A) as well as the Casselman-Shalika formula for the p-adic spherical Whittaker function. This book also covers more advanced topics such as spherical Hecke algebras and automorphic L-functions. Many of these mathematical results have natural interpretations in string theory, and so some basic concepts of string theory are introduced with an emphasis on connections with automorphic forms. Throughout the book special attention is paid to small automorphic representations, which are of particular importance in string theory but are also of independent mathematical interest. Numerous open questions and conjectures, partially motivated by physics, are included to prompt the reader's own research.
This definitive guide provides advanced students and researchers with a detailed yet accessible overview of all of the central topics of meteor science. Leading figures from the field summarise their active research on themes ranging from the physical composition of meteoroids to the most recent optical and radar observations and ongoing theoretical developments. Crucial practical issues are also considered, such as the risk posed by meteoroids - to spacecraft, and on the ground - and future avenues of research are explored. Taking advantage of the latest dynamical models, insights are offered into meteor flight phenomena and the evolution of meteoroid streams and complexes, as well as describing the in-depth laboratory analysis of recovered material. The rapid rate of progress in twenty-first-century research makes this volume essential reading for anyone who wishes to understand how recent developments broaden our understanding of meteors, meteoroids and their origins.
Are humans a galactic oddity, or will complex life with human abilities develop on planets with environments that remain habitable for long enough? In a clear, jargon-free style, two leading researchers in the burgeoning field of astrobiology critically examine the major evolutionary steps that led us from the distant origins of life to the technologically advanced species we are today. Are the key events that took life from simple cells to astronauts unique occurrences that would be unlikely to occur on other planets? By focusing on what life does - it's functional abilities - rather than specific biochemistry or anatomy, the authors provide plausible answers to this question. Systematically exploring the various pathways that led to the complex biosphere we experience on planet Earth, they show that most of the steps along that path are likely to occur on any world hosting life, with only two exceptions: One is the origin of life itself - if this is a highly improbable event, then we live in a rather "empty universe". However, if this isn't the case, we inevitably live in a universe containing a myriad of planets hosting complex as well as microbial life - a "cosmic zoo". The other unknown is the rise of technologically advanced beings, as exemplified on Earth by humans. Only one technological species has emerged in the roughly 4 billion years life has existed on Earth, and we don't know of any other technological species elsewhere. If technological intelligence is a rare, almost unique feature of Earth's history, then there can be no visitors to the cosmic zoo other than ourselves. Schulze-Makuch and Bains take the reader through the history of life on Earth, laying out a consistent and straightforward framework for understanding why we should think that advanced, complex life exists on planets other than Earth. They provide a unique perspective on the question that puzzled the human species for centuries: are we alone?
This book journeys into one of the most fascinating intellectual adventures of recent decades - understanding and exploring the final fate of massive collapsing stars in the universe. The issue is of great interest in fundamental physics and cosmology today, from both the perspective of gravitation theory and of modern astrophysical observations. This is a revolution in the making and may be intimately connected to our search for a unified understanding of the basic forces of nature, namely gravity that governs the cosmological universe, and the microscopic forces that include quantum phenomena. According to the general theory of relativity, a massive star that collapses catastrophically under its own gravity when it runs out of its internal nuclear fuel must give rise to a space-time singularity. Such singularities are regions in the universe where all physical quantities take their extreme values and become arbitrarily large. The singularities may be covered within a black hole, or visible to faraway observers in the universe. Thus, the final fate of a collapsing massive star is either a black hole or a visible naked singularity. We discuss here recent results and developments on the gravitational collapse of massive stars and possible observational implications when naked singularities happen in the universe. Large collapsing massive stars and the resulting space-time singularities may even provide a laboratory in the cosmos where one could test the unification possibilities of basic forces of nature.
`Rich in scholarship-invaluable to scholars studying the first milennium AD; highly recommended.' Choice Eclipses and comets can now be precisely dated and are therefore an invaluable aid in checking the chronology of historical records. This study covers the whole world and provides a list of eclipses and comets century by century.
A self-contained text, systematically presenting the determination and classification of exact solutions in three-dimensional Einstein gravity. This book explores the theoretical framework and general physical and geometrical characteristics of each class of solutions, and includes information on the researchers responsible for their discovery. Beginning with the physical character of the solutions, these are identified and ordered on the basis of their geometrical invariant properties, symmetries, and algebraic classifications, or from the standpoint of their physical nature, for example electrodynamic fields, fluid, scalar field, or dilaton. Consequently, this text serves as a thorough catalogue on 2+1 exact solutions to the Einstein equations coupled to matter and fields. The solutions are also examined from different perspectives, enabling a conceptual bridge between exact solutions of three- and four-dimensional gravities, and therefore providing graduates and researchers with an invaluable resource on this important topic in gravitational physics. Including contributions by David Chow, Christopher N. Pope and Ergin Sezgin (chapters 16-19).
Present-day elliptical, spiral and irregular galaxies are large systems made of stars, gas and dark matter. Their properties result from a variety of physical processes that have occurred during the nearly fourteen billion years since the Big Bang. This comprehensive textbook, which bridges the gap between introductory and specialized texts, explains the key physical processes of galaxy formation, from the cosmological recombination of primordial gas to the evolution of the different galaxies that we observe in the Universe today. In a logical sequence, the book introduces cosmology, illustrates the properties of galaxies in the present-day Universe, then explains the physical processes behind galaxy formation in the cosmological context, taking into account the most recent developments in this field. The text ends on how to find distant galaxies with multi-wavelength observations, and how to extract the physical and evolutionary properties based on imaging and spectroscopic data.
Gravitational lensing is a consequence of general relativity, where the gravitational force due to a massive object bends the paths of light originating from distant objects lying behind it. Using very little general relativity and no higher level mathematics, this text presents the basics of gravitational lensing, focusing on the equations needed to understand the phenomena. It then applies them to a diverse set of topics, including multiply imaged objects, time delays, extrasolar planets, microlensing, cluster masses, galaxy shape measurements, cosmic shear, and lensing of the cosmic microwave background. This approach allows undergraduate students and others to get quickly up to speed on the basics and the important issues. The text will be especially relevant as large surveys such as LSST and Euclid begin to dominate the astronomical landscape. Designed for a one semester course, it is accessible to anyone with two years of undergraduate physics background.
A Daily Telegraph and TLS Book of the Year 'An audacious tour of all that science can teach us' Edward O. Wilson Specialist scientific fields are developing at incredibly swift speeds, but what can they really tell us about how the universe began and how humans evolved to play such a dominant role on Earth? John Hands's extraordinarily ambitious quest brings together our scientific knowledge and evaluates the theories and evidence about the origin and evolution of matter, life, consciousness, and humankind. Cosmosapiens provides the most comprehensive account yet of current ideas such as cosmic inflation, dark energy, the selfish gene, and neurogenetic determinism. In clear and accessible language, Hands differentiates the firmly established from the speculative and examines the claims of various fields such as string theory to approach a unified theory of everything. In doing so he challenges the orthodox consensus in those branches of cosmology, biology, and neuroscience that have ossified into dogma. His striking analysis reveals underlying patterns of cooperation, complexification, and convergence that lead to the unique emergence in humans of a self-reflective consciousness that enables us to determine our future evolution. This groundbreaking book is destined to become a classic of scientific thinking.
David Christian, creator of Big History ('My favourite course of all time' Bill Gates), brings us the epic story of the universe and our place in it, from 13.8 billion years ago to the remote future 'Nails home the point: Life is a miracle ... A compelling history of everything' Washington Post 'Spectacular' Carlo Rovelli How did we get from the Big Bang to today's staggering complexity, in which seven billion humans are connected into networks powerful enough to transform the planet? And why, in comparison, are our closest primate relatives reduced to near-extinction? Big History creator David Christian gives the answers in a mind-expanding cosmological detective story told on the grandest possible scale. He traces how, during eight key thresholds, the right conditions have allowed new forms of complexity to arise, from stars to galaxies, Earth to homo sapiens, agriculture to fossil fuels. This last mega-innovation gave us an energy bonanza that brought huge benefits to mankind, yet also threatens to shake apart everything we have created. 'Rather like the Big Bang, the book is awe-inspiring ... Superb' The Times 'With fascinating ideas on every page and the page-turning energy of a good thriller, this is a landmark work' Sir Ken Robinson, author of The Element
- Discover how the ancient language of astrology is completely relevant to your life today. - Appreciate how astrology is a language of meaning that helps you decode your inner reality and outer experience. - Understand how your birth moment encapsulates the `information seed for all that unfolds in your life. - Learn how understanding your birthchart can help you live a bigger life, as a true co-creator.
Relativistic kinetic theory has widespread application in astrophysics and cosmology. The interest has grown in recent years as experimentalists are now able to make reliable measurements on physical systems where relativistic effects are no longer negligible. This ambitious monograph is divided into three parts. It presents the basic ideas and concepts of this theory, equations and methods, including derivation of kinetic equations from the relativistic BBGKY hierarchy and discussion of the relation between kinetic and hydrodynamic levels of description. The second part introduces elements of computational physics with special emphasis on numerical integration of Boltzmann equations and related approaches, as well as multi-component hydrodynamics. The third part presents an overview of applications ranging from covariant theory of plasma response, thermalization of relativistic plasma, comptonization in static and moving media to kinetics of self-gravitating systems, cosmological structure formation and neutrino emission during the gravitational collapse.
Answers to science's most enduring questions from "Can I break the light-speed barrier like on Star Trek?" and "Is there life on other planets?" to "What is empty space made of?" This is an indispensable guide to physics that offers readers an overview of the most popular physics topics written in an accessible, irreverent, and engaging manner while still maintaining a tone of wry skepticism. Even the novice will be able to follow along, as the topics are addressed using plain English and (almost) no equations. Veterans of popular physics will also find their nagging questions addressed, like whether the universe can expand faster than light, and for that matter, what the universe is expanding into anyway. Gives a one-stop tour of all the big questions that capture the public imagination including string theory, quantum mechanics, parallel universes, and the beginning of time Explains serious science in an entertaining, conversational, and easy-to-understand way Includes dozens of delightfully groan-worthy cartoons that explain everything from special relativity to Dark Matter Filled with fascinating information and insights, this book will both deepen and transform your understanding of the universe.
Will the universe expand forever? Or will it collapse in a Big Crunch within the next few billion years? If the Big Bang theory is correct in presenting the origins of the universe as a smooth fireball, how did the universe come to contain structures as large as the recently discovered "Great Wall" of galaxies, which stretches hundreds of millions of light years? Such are the compelling questions that face cosmologists today, and it is the excitement and wonder of their research that Michael Lemonick shares in this lively tour of the current state of astrophysics and cosmology. Here we visit observatories and universities where leading scientists describe how they envision the very early stages, the history, and the future of the universe. The discussions help us to make sense of many recent findings, including cosmic ripples, which supply evidence of the first billionth of a second of the universe; anomalous galactic structures such as the Great Wall, the Great Void, and the Great Attractor; and the mysterious presence of dark matter, massive but invisible. Lemonick assembles this information into a comprehensive, up-to-date picture of modern cosmology, and a portrait of its often contentious practitioners. Originally published in 1995. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
What is 'nothing'? What remains when you take all the matter away? Can empty space - a void - exist? This Very Short Introduction explores the science and the history of the elusive void: from Aristotle who insisted that the vacuum was impossible, via the theories of Newton and Einstein, to our very latest discoveries and why they can tell us extraordinary things about the cosmos. Frank Close tells the story of how scientists have explored the elusive void, and the rich discoveries that they have made there. He takes the reader on a lively and accessible history through ancient ideas and cultural superstitions to the frontiers of current research. He describes how scientists discovered that the vacuum is filled with fields; how Newton, Mach, and Einstein grappled with the nature of space and time; and how the mysterious 'aether' that was long ago supposed to permeate the void may now be making a comeback with the latest research into the 'Higgs field'. We now know that the vacuum is far from being empty - it seethes with virtual particles and antiparticles that erupt spontaneously into being, and it also may contain hidden dimensions that we were previously unaware of. These new discoveries may provide answers to some of cosmology's most fundamental questions: what lies outside the universe, and, if there was once nothing, then how did the universe begin? ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable. |
![]() ![]() You may like...
The Disordered Cosmos - A Journey Into…
Chanda Prescod-Weinstein
Hardcover
A Brief History Of Time - From Big Bang…
Stephen Hawking
Paperback
![]()
|