![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time > Cosmology & the universe
Recent advances in the understanding of star formation and evolution have been impressive and aspects of that knowledge are explored in this volume. The black hole stellar endpoints are studied and geodesic motion is explored. The emission of gravitational waves is featured due to their very recent experimental discovery.The second aspect of the text is space exploration which began 62 years ago with the Sputnik Earth satellite followed by the landing on the Moon just 50 years ago. Since then Mars has been explored remotely as well as flybys of the outer planets and probes which have escaped the solar system. The text explores many aspects of rocket travel. Finally possibilities for interstellar travel are discussed.All these topics are treated in a unified way using the Matlab App to combine text, figures, formulae and numeric input and output. In this way the reader may vary parameters and see the results in real time. That experience aids in building up an intuitive feel for the many specific problems given in this text.
This new graduate textbook adopts a pedagogical approach to contemporary cosmology that enables readers to build an intuitive understanding of theory and data, and of how they interact, which is where the greatest advances in the field are currently being made. Using analogies, intuitive explanations of complex topics, worked examples and computational problems, the book begins with the physics of the early universe, and goes on to cover key concepts such as inflation, dark matter and dark energy, large‑scale structure, and cosmic microwave background. Computational and data analysis techniques, and statistics, are integrated throughout the text, particularly in the chapters on late-universe cosmology, while another chapter is entirely devoted to the basics of statistical methods. A solutions manual for end-of-chapter problems is available to instructors, and suggested syllabi, based on different course lengths and emphasis, can be found in the Preface. Online computer code and datasets enhance the student learning experience.
Some major developments of physics in the last three decades are addressed by highly qualified specialists in different specific fields. They include renormalization problems in QFT, vacuum energy fluctuations and the Casimir effect in different configurations, and a wealth of applications. A number of closely related issues are also considered. The cosmological applications of these theories play a crucial role and are at the very heart of the book; in particular, the possibility to explain in a unified way the whole history of the evolution of the Universe: from primordial inflation to the present day accelerated expansion. Further, a description of the mathematical background underlying many of the physical theories considered above is provided. This includes the uses of zeta functions in physics, as in the regularization problems in QFT already mentioned, specifically in curved space-time, and in Casimir problems as.
Due to its specific chemical and physical properties, water is essential for life on Earth. And it is assumed that this would be the case for extraterrestrial life as well. Therefore it is important to investigate where water can be found in the Universe. Although there are places that are completely dry, places where the last rainfall happened probably several 100 million years ago, surprisingly this substance is quite omnipresent. In the outer solar system the large satellites of Jupiter and Saturn are covered by a thick layer of ice that could be hiding a liquid ocean below. This of course brings up the question of whether the recently detected extrasolar planets could have some water on their surfaces and how we can detect this. Water molecules are also found in interstellar gas and dust clouds. This book begins with an introductory chapter reviewing the physical and chemical properties of water. Then it illuminates the apparent connection between water and life. This is followed by chapters dealing with our current knowledge of water in the solar system, followed by a discussion concerning the potential presence and possible detection of water on exoplanets. The signature of water in interstellar space and stars are reviewed before the origin of water in the Universe is finally discussed. The book ends with an appendix on detection methods, satellite missions and astrophysical concepts touched upon in the main parts of the book. The search for water in the Universe is related to the search for extraterrestrial life and is of fundamental importance for astrophysics, astrobiology and other related topics. This book therefore addresses students and researchers in these fields.
In our small corner of the universe, we know how some matter behaves most of the time and what even less of it looks like, and we have some good guesses about where it all came from. But we really have no clue what's going on. In fact, we don't know what about 95% of the universe is made of. So what happens when a cartoonist and a physicist walk into this strange, mostly unknown universe? Jorge Cham and Daniel Whiteson gleefully explore the biggest unknowns, why these things are still mysteries, and what a lot of smart people are doing to figure out the answers (or at least ask the right questions). While they're at it, they helpfully demystify many complicated things we do know about, from quarks and neutrinos to gravitational waves and exploding black holes. With equal doses of humour and delight, they invite us to see the universe as a vast expanse of mostly uncharted territory that's still ours to explore. This is a book for fans of Brian Cox and What If. This highly entertaining highly illustrated book is perfect for anyone who's curious about all the great mysteries physicists are going to solve next.
This book explains hyperspace and multidimensional geometries in an effort to help readers to manipulate, visualize, and think about the higher spatial dimensions that all serious physical theories since relativity have required. This book alternates sections explaining the science with a fictional story line that exemplifies, comments on, and helps to clarify the science. The book also features a number of appendices, including annotated guides to the literature and to relevant science fiction, further commentary on the mathematics of hyperspace, questions and puzzles, and source code for modeling hyperspace. The book has the goal to explain the science of hyperspace accurately, but it is light and playful in its approach.
First published in 1973, this influential work discusses Einstein's General Theory of Relativity to show how two of its predictions arise: first, that the ultimate fate of many massive stars is to undergo gravitational collapse to form 'black holes'; and second, that there was a singularity in the past at the beginning of the universe. Starting with a precise formulation of the theory, including the necessary differential geometry, the authors discuss the significance of space-time curvature and examine the properties of a number of exact solutions of Einstein's field equations. They develop the theory of the causal structure of a general space-time, and use it to prove a number of theorems establishing the inevitability of singularities under certain conditions. A Foreword contributed by Abhay Ashtekar and a new Preface from George Ellis help put the volume into context of the developments in the field over the past fifty years.
Bringing the material up to date, Black Holes, Wormholes and Time Machines, Second Edition captures the new ideas and discoveries made in physics since the publication of the best-selling first edition. While retaining the popular format and style of its predecessor, this edition explores the latest developments in high-energy astroparticle physics and Big Bang cosmology. The book continues to make the ideas and theories of modern physics easily understood by anyone, from researchers to students to general science enthusiasts. Taking you on a journey through space and time, author Jim Al-Khalili covers some of the most fascinating topics in physics today, including:
Professor Al-Khalili explains often complex scientific concepts in simple, nontechnical terms and imparts an appreciation of the cosmos, helping you see how time traveling may not be so far-fetched after all.
Manolis Plionis & Spiros Cotsakis plionis@sapfo. astro. noa. gr skot@aegean. gr Since the dawn of human civilisation natural phenomena have been subject to observation and investigation by the humans who initially ascribed to them 'divine' powers. Gods of 'good' and 'evil' werecreatedaccording to the useful- ness or notofsuch unexplained, atthetime, phenomena. Astheir understanding of the world developed and deepened, the divine powers, religious beliefs, su- perstitions and mysticism gave their place to the knowledge, limited that it may be, of physical reality. However, many issues have been and still are out of grasp of human understanding. These issues have always been at the center of philosophical, theological, and more recently, scientific debate. It is to us incredible that many of the conclusions concerning the true scientific explanation of the external world, to which the ancient Greeks arrived purely on the basis of abstract thought, came so near to modem scientific ideas and also form the basis of modem science. We cannot but stand with amazement at the original thoughts of Archimedes who, among his many extraordinary achieve- ments in mathematics and physics, calculated (cf. TheSandReckoner) the mass density of the observable universe and came up with a figure that is in complete agreement with current estimates coming from observational cosmology.
Cosmic masers, naturally occurring amplifiers of microwave emission from atoms and molecules in the Milky Way and other galaxies, provide important tools to investigate astrophysical environments. The first, hydroxyl (OH) masers were discovered in 1965 and since that time several thousand sources of maser emission, from a variety of cosmic molecules, have been discovered and studied. Because this natural emission occurs at discrete frequencies, which depend upon specific atomic or molecular transitions, masers are also useful for studying the structure and dynamics of our own galaxy. Masers in other galaxies are now used for cosmological studies of the dynamics of massive black holes in galactic nuclei and to directly measure the Hubble constant, H0. This volume contains a comprehensive, up-to-date review of cosmic masers, their nature, sources, environments and uses, as presented at IAU Symposium 287, the fourth international symposium on cosmic masers.
Interpreting general relativity relies on a proper description of non-inertial frames and Dirac observables. This book describes global non-inertial frames in special and general relativity. The first part covers special relativity and Minkowski space time, before covering general relativity, globally hyperbolic Einstein space-time, and the application of the 3+1 splitting method to general relativity. The author uses a Hamiltonian description and the Dirac-Bergmann theory of constraints to show that the transition between one non-inertial frame and another is a gauge transformation, extra variables describing the frame are gauge variables, and the measureable matter quantities are gauge invariant Dirac observables. Point particles, fluids and fields are also discussed, including how to treat the problems of relative times in the description of relativistic bound states, and the problem of relativistic centre of mass. Providing a detailed description of mathematical methods, the book is perfect for theoretical physicists, researchers and students working in special and general relativity.
From a physicist at the top of his field comes this rigorous yet accessible book that takes us back in time to before the birth of the universe.
In Losing the Nobel Prize, cosmologist and inventor of the BICEP (Background Imaging of Cosmic Extragalactic Polarization) experiment Brian Keating tells the inside story of BICEP2's mesmerising discovery and the scientific drama that ensued. In an adventure story that spans the globe, Keating takes us on a personal journey of revelation and discovery, bringing to vivid life the highly competitive, take-no-prisoners, publish-or-perish world of modern science. Along the way, he provocatively argues that the Nobel Prize, instead of advancing scientific progress, may actually hamper it, encouraging speed and greed while punishing collaboration and bold innovation.
The lectures that four authors present in this volume investigate core topics related to the accelerated expansion of the Universe. Accelerated expansion occured in the ?36 very early Universe - an exponential expansion in the in ationary period 10 s after the Big Bang. This well-established theoretical concept had rst been p- posed in 1980 by Alan Guth to account for the homogeneity and isotropy of the observable universe, and simultaneously by Alexei Starobinski, and has since then been developed by many authors in great theoretical detail. An accelerated expansion of the late Universe at redshifts z< 1 has been disc- ered in 1998; the expansion is not slowing down under the in uence of gravity, but is instead accelerating due to some uniformly distributed, gravitationally repulsive substance accounting for more than 70% of the mass-energy content of the U- verse, which is now known as dark energy. Its most common interpretation today is given in terms of the so-called CDM model with a cosmological constant .
The amount of cosmological data has dramatically increased in
the past decades due to an unprecedented development of telescopes,
detectors and satellites. Efficiently handling and analysing new
data of the order of terabytes per day requires not only computer
power to be processed but also the development of sophisticated
algorithms and pipelines.
Now in its 4th edition, this classic text presents a quantitative understanding of a range of astrophysical concepts. Emphasizing physical concepts, the book outlines cosmic events but does not portray them in detail. Instead, it provides a series of astrophysical sketches showing how to obtain quantitative insights into the structure and evolution of stars, the dynamics of cosmic gases, the large-scale behavior of the universe, and the origins of life. Nearly every part of the text has been reconsidered and rewritten for the new edition; new sections cover recent developments, and the remainder has been revised and brought up to date.
Agnes Mary Clerke (1842 1907) published The System of the Stars in 1890 when she was a well-established popular science writer. The volume was intended to bring the educated public up to date with the progress made during the nineteenth century in the field of sidereal astronomy. The work was one of the first publications to be illustrated with astrophotography: it contains five astronomical photographs of nebulae. Such photographs had significant impact on the reception and popular acceptance of astrophotography as scientific data. In The System of the Stars, Clerke used the photographs to argue that the natural beauty and symmetry of the universe, displayed by astrophotography, proved the existence of a creator. The work is an important piece of popular Victorian scientific literature, and remains significant today in the context of the nineteenth-century intellectual debates on the relationship between the sciences and religious belief.
Critical acclaim for John Gribbin ""The master of popular science."" ""Gribbin explains things very well indeed, and there's not an
equation in sight."" ""Gribbin breathes life into the core ideas of complexity
science, and argues convincingly that the basic laws, even in
biology, will ultimately turn out to be simple."" ""Gribbin takes us through the basics of chaos theory] with his
customary talent for accessibility and clarity. His] arguments are
driven not by impersonal equations but by a sense of wonder at the
presence in the universe and in nature of simple, self-organizing
harmonies underpinning all structures, whether they are stars or
flowers."" ""In the true quantum realm, Gribbin remains the premier
expositor of the latest developments.""
Neither Arkadii nor Boris Strugatskii had originally intended to make a living in writing. Arkadii dreamed of becoming an astronomer, but his wartime experience and training led him to work as a translator and editor of Japanese literature. Boris intended to become a physicist, trained as an astronomer, and ended up as a computer specialist at Pulkovo Observatory. This common thread of astronomy turns out to be fantastically important for understanding their works, as their most important ones are experiments in cosmology, and their shared expertise is instrumental in their construction of literary hellscapes. This book explores how the Strugatskiis' cosmological explorations are among the most fundamental elements of their art. It examines also how these explorations connect to their predecessors in the Russian literary tradition-particularly to the poetry of Pushkin.
At this very moment the most ambitious scientific experiment of all time is beginning, and yet its precise aims are little understood by the general public. This book aims to provide an everyman's guide for understanding and following the discoveries that will take place within the next few years at the Large Hadron Collider project at CERN. The reader is invited to share an insider's view of the theory of particle physics, and is equipped to appreciate the scale of the intellectual revolution that is about to take place. The technological innovations required to build the LHC are among the most astonishing aspects of this scientific adventure, and they too are described here as part of the LHC story. The book culminates with an outline of the scientific aims and expectations at the LHC. Does the mysterious Higgs boson exist? Does space hide supersymmetry or extend into extra dimensions? How can colliding protons at the LHC unlock the secrets of the origin of our universe? These questions are all framed and then addressed by an expert in the field. While making no compromises in accuracy, this highly technical material is presented in a friendly, accessible style. The book's aim is not just to inform, but to give the reader the physicist's sense of awe and excitement, as we stand on the brink of a new era in understanding the world in which we all live.
Originating from the Rede Lecture delivered at the University of Cambridge in November 1930, this book is based upon the conviction that the teachings and findings of astronomy and physical science are destined to produce an immense change on our outlook on the universe as a whole, and on views about the significance of human life. The author contends that the questions at issue are ultimately one for philosophical discussion, but that before philosophers can speak, science should present ascertained facts and provisional hypotheses. The book is therefore written with these thoughts in mind while broadly presenting the fundamental physical ideas and findings relevant for a wider philosophical inquiry.
This book provides an introduction to Quantum Chromodynamics (QCD), the theory of strong interactions. It covers in full detail both the theoretical foundations and the experimental tests of the theory. Although the experimental chapters focus on recent measurements, the subject is placed into historical perspective by also summarizing the steps which lead to the formulation of QCD. Measurements are discussed as they were performing by the LEP experiments at CERN, or at hadron-hadron and lepton-hadron colliders such as the TEVATRON at Fermilab and HERN at DESY. Emphasis is placed on high energy tests of QCD, such as measurements of the strong coupling constant, investigations of the non-abelian structure of the underlying gauge group, determinations of nucleon structure functions, and studies of the non-perturbative hadronization process. This excellent text gives a detailed overview of how QCD developed in the 20th century and where we stand with respect to a quantitative understanding after the turn of the millenium. The text is intended for graduate and postgraduate students as well as researchers, and includes numerous problems and solutions. |
You may like...
Body and Cosmos - Studies in Early…
Toke Knudsen, Jacob Schmidt-Madsen, …
Hardcover
R3,809
Discovery Miles 38 090
Starry Messenger - Cosmic Perspectives…
Neil De Grasse Tyson
Paperback
A Brief History Of Time - From Big Bang…
Stephen Hawking
Paperback
(4)
The Disordered Cosmos - A Journey Into…
Chanda Prescod-Weinstein
Hardcover
R548
Discovery Miles 5 480
|