![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Astronomy, space & time > Cosmology & the universe
Illustrated with breathtaking images of the Solar System and of the Universe around it, this book explores how the discoveries within the Solar System and of exoplanets far beyond it come together to help us understand the habitability of Earth, and how these findings guide the search for exoplanets that could support life. The author highlights how, within two decades of the discovery of the first planets outside the Solar System in the 1990s, scientists concluded that planets are so common that most stars are orbited by them. The lives of exoplanets and their stars, as of our Solar System and its Sun, are inextricably interwoven. Stars are the seeds around which planets form, and they provide light and warmth for as long as they shine. At the end of their lives, stars expel massive amounts of newly forged elements into deep space, and that ejected material is incorporated into subsequent generations of planets. How do we learn about these distant worlds? What does the exploration of other planets tell us about Earth? Can we find out what the distant future may have in store for us? What do we know about exoworlds and starbirth, and where do migrating hot Jupiters, polluted white dwarfs, and free-roaming nomad planets fit in? And what does all that have to do with the habitability of Earth, the possibility of finding extraterrestrial life, and the operation of the globe-spanning network of the sciences?
On megaparsec scales, matter and galaxies have aggregated into a complex network of interconnected filaments, wall-like structures and compact clusters surrounded by large near-empty void regions. Dubbed the 'Cosmic Web', theoretical and observational studies have led to its recognition as a key aspect of structure in the Universe, representing a universal phase in the gravitationally driven emergence and evolution of cosmic structure. IAU Symposium 308 marked the centenary of the birth of the Russian physicist and cosmologist Yakov B. Zeldovich (1914-87), who was instrumental in the development of this view of structure formation. His seminal work paved the way towards an understanding of the complex web-like structure observed in our Universe. This volume synthesizes the insights obtained from many different observational and theoretical studies, and helps prepare researchers and students working in this vibrant field for the many upcoming surveys.
'fascinating' Brian Cox This is the story of citizen science. Where once astronomers sat at the controls of giant telescopes in remote locations, praying for clear skies, now they have no need to budge from their desks, as data arrives in their inbox. And what they receive is overwhelming; projects now being built provide more data in a few nights than in the whole of humanity's history of observing the Universe. It's not just astronomy either-dealing with this deluge of data is the major challenge for scientists at CERN, and for biologists who use automated cameras to spy on animals in their natural habitats. Artificial intelligence is one part of the solution-but will it spell the end of human involvement in scientific discovery? No, argues Chris Lintott. We humans still have unique capabilities to bring to bear-our curiosity, our capacity for wonder, and, most importantly, our capacity for surprise. It seems that humans and computers working together do better than computers can on their own. But with so much scientific data, you need a lot of scientists-a crowd, in fact. Lintott found such a crowd in the Zooniverse, the web-based project that allows hundreds of thousands of enthusiastic volunteers to contribute to science. In this book, Lintott describes the exciting discoveries that people all over the world have made, from galaxies to pulsars, exoplanets to moons, and from penguin behaviour to old ship's logs. This approach builds on a long history of so-called 'citizen science', given new power by fast internet and distributed data. Discovery is no longer the remit only of scientists in specialist labs or academics in ivory towers. It's something we can all take part in. As Lintott shows, it's a wonderful way to engage with science, yielding new insights daily. You, too, can help explore the Universe in your lunch hour.
Tom Van Flandern's book adds a new dimension to cosmology--not only does it present a novel approach to timeless issues, it stands up to the closest scientific scrutiny. Even the most respected scientists today will readily admit that the Big Bang Theory is full of holes. But it takes a new look, like "Dark Matter, Missing Planets, and New Comets," to explain not only why the theory is wrong but what to substitute in its place. If you are curious about such things as the nature of matter and the origin of the solar system, but feel inadequately equipped to grasp what modern science has to say about such things, read this book. You will not get the all too common condescending attempt to water down the mysteries' of modern science into a form intelligible to little non scientist you, but rather a straightforward new theory, logically derived in front of your eyes, which challenges the roots of many of today's complex accepted paradigms, yet whose essence is simple enough to be thoroughly communicated to the intelligent layman without "losing it in the translation."
Present-day elliptical, spiral and irregular galaxies are large systems made of stars, gas and dark matter. Their properties result from a variety of physical processes that have occurred during the nearly fourteen billion years since the Big Bang. This comprehensive textbook, which bridges the gap between introductory and specialized texts, explains the key physical processes of galaxy formation, from the cosmological recombination of primordial gas to the evolution of the different galaxies that we observe in the Universe today. In a logical sequence, the book introduces cosmology, illustrates the properties of galaxies in the present-day Universe, then explains the physical processes behind galaxy formation in the cosmological context, taking into account the most recent developments in this field. The text ends on how to find distant galaxies with multi-wavelength observations, and how to extract the physical and evolutionary properties based on imaging and spectroscopic data.
The first volume of "Cosmos," his five-volume survey of the universe, appeared in 1845, though Humboldt had labored on the entire work for nearly half a century. He scrupulously sent sections of the work to other experts for suggestions and corrections. The last volume, put together from his notes after his death, appeared in 1861. The volumes were translated almost as rapidly as they appeared. This paperback edition reprints the Harper & Brothers edition, published in New York in 1858-59.
The Extravagant Universe tells the story of a remarkable adventure of scientific discovery. One of the world's leading astronomers, Robert Kirshner, takes readers inside a lively research team on the quest that led them to an extraordinary cosmological discovery: the expansion of the universe is accelerating under the influence of a dark energy that makes space itself expand. In addition to sharing the story of this exciting discovery, Kirshner also brings the science up-to-date in a new epilogue. He explains how the idea of an accelerating universe--once a daring interpretation of sketchy data--is now the standard assumption in cosmology today. This measurement of dark energy--a quality of space itself that causes cosmic acceleration--points to a gaping hole in our understanding of fundamental physics. In 1917, Einstein proposed the "cosmological constant" to explain a static universe. When observations proved that the universe was expanding, he cast this early form of dark energy aside. But recent observations described first-hand in this book show that the cosmological constant--or something just like it--dominates the universe's mass and energy budget and determines its fate and shape. Warned by Einstein's blunder, and contradicted by the initial results of a competing research team, Kirshner and his colleagues were reluctant to accept their own result. But, convinced by evidence built on their hard-earned understanding of exploding stars, they announced their conclusion that the universe is accelerating in February 1998. Other lines of inquiry and parallel supernova research now support a new synthesis of a cosmos dominated by dark energy but also containing several forms of dark matter. We live in an extravagant universe with a surprising number of essential ingredients: the real universe we measure is not the simplest one we could imagine.
A Nobel Prize-winning physicist argues that beauty is the fundamental organizing principle for the entire universe In this scientific tour de force, world-class physicist Frank Wilczek argues that beauty is at the heart of the logic of the universe. As the quest to find the beauty embodied in the universe has connected all scientific pursuit, from Pythagoras to Einstein, Wilczek shows us just how deeply intertwined our ideas about beauty and art are with our understanding of the cosmos. A Beautiful Question is a mind-expanding book combining the age-old human quest for beauty with the age-old human quest for truth.
Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory A new edition of the New York Times bestseller—now a three-part Nova special on PBS-TV coming in Fall 2003: a fascinating and thought-provoking journey through the mysteries of space, time, and matter.
In this work the authors gather and present current research in the study of cosmology. The topics discussed include the mysteries of the geometrization of gravitation; relativistic viscous universe models; cosmology and science; a discussion on whether science has established if the cosmos are physically comprehensible?; Mach, Einstein, dark matter and knowability; implementing Hilltop F-term hybrid inflation in supergravity; and relative velocities, geometry and the expansion of space.
Free yourself from cosmological tyranny! Everything started in a Big Bang? Invisible dark matter? Black holes? Why accept such a weird cosmos? For all those who wonder about this bizarre universe, and those who want to overthrow the Big Bang, this handbook gives you 'just the facts': the observations that have shaped these ideas and theories. While the Big Bang holds the attention of scientists, it isn't perfect. The authors pull back the curtains, and show how cosmology really works. With this, you will know your enemy, cosmic revolutionary - arm yourself for the scientific arena where ideas must fight for survival! This uniquely-framed tour of modern cosmology gives a deeper understanding of the inner workings of this fascinating field. The portrait painted is realistic and raw, not idealized and airbrushed - it is science in all its messy detail, which doesn't pretend to have all the answers.
The ideal gift for all amateur and seasoned astronomers. A comprehensive handbook to the planets, stars and constellations visible from the southern hemisphere. 6 pages for each month covering January-December 2023. Diagrams drawn for the latitude of southern Australia, but including events visible from New Zealand and South Africa. Written and illustrated by astronomical experts, Storm Dunlop and Wil Tirion. Content includes: Advice on where to start looking Easy-to-use star maps for each month with descriptions of what to see Special, detailed charts for positions of planets, minor planets and comets in 2023 Seasonal charts Details of dark sky sites Details of objects and events you might see in 2023 Diagrams of notable events visible from Australia, and some for New Zealand and South Africa Also available: A month-by-month guide to exploring the skies above Britain and Ireland and A month-by-month guide to exploring the skies above North America.
In this book, the authors present current research from across the globe in the study of the theory, assumptions and problems of the Big Bang theory. Topics discussed include cosmic structure formation after the Big Bang; temporal topos and u-singularities; the quantum theory of the Big Bang; de Sitter-Fantapppie universe and the astrophysical s-factors of proton radiative capture in thermonuclear reactions in the stars and the universe.
In this book, the authors gather research from across the globe in the study of the characteristics, composition and orbits of comets. Topics discussed include the role of collisions and magneto-electrochemistry in the planetary origins of comets; 19th century cometary observations; icy particles of cometary atmosphere; cavities as a source of outbursts from comets; infrared observations of comets and the role of comets as contributors to the early evolution of Earth.
Aliens. Ley lines. Water dowsing. Conspiracies and myths captivate imaginations and promise mystery and magic. Whether it's arguing about the moon landing hoax or a Frisbee-like Earth drifting through space, when held up to science and critical thinking, these ideas fall flat. In Weird Earth: Debunking Strange Ideas About Our Planet, Donald R. Prothero demystifies these conspiracies and offers answers to some of humanity's most outlandish questions. Applying his extensive scientific knowledge, Prothero corrects misinformation that con artists and quacks use to hoodwink others about geology-hollow earth, expanding earth, and bizarre earthquakes-and mystical and paranormal happenings-healing crystals, alien landings, and the gates of hell. By deconstructing wild claims such as prophesies of imminent natural disasters, Prothero provides a way for everyone to recognize dubious assertions. Prothero answers these claims with facts, offering historical and scientific context in a light-hearted manner that is accessible to everyone, no matter their background. With a careful layering of evidence in geology, archaeology, and biblical and historical records, Prothero's Weird Earth examines each conspiracy and myth and leaves no question unanswered.
In the final book of his astonishing career, Carl Sagan brilliantly examines the burning questions of our lives, our world, and the universe around us. These luminous, entertaining essays travel both the vastness of the cosmos and the intimacy of the human mind, posing such fascinating questions as how did the universe originate and how will it end, and how can we meld science and compassion to meet the challenges of the coming century? Here, too, is a rare, private glimpse of Sagan’s thoughts about love, death, and God as he struggled with fatal disease. Ever forward-looking and vibrant with the sparkle of his unquenchable curiosity, Billions & Billions is a testament to one of the great scientific minds of our day.
Einstein's general theory of relativity can be a notoriously difficult subject for students approaching it for the first time, with arcane mathematical concepts such as connection coefficients and tensors adorned with a forest of indices. This book is an elementary introduction to Einstein's theory and the physics of curved space-times that avoids these complications as much as possible. Its first half describes the physics of black holes, gravitational waves and the expanding Universe, without using tensors. Only in the second half are Einstein's field equations derived and used to explain the dynamical evolution of the early Universe and the creation of the first elements. Each chapter concludes with problem sets and technical mathematical details are given in the appendices. This short text is intended for undergraduate physics students who have taken courses in special relativity and advanced mechanics.
The Physics of the Early Universe is an edited and expanded version of the lectures given at a recent summer school of the same name. Its aim is to present an advanced multi-authored textbook that meets the needs of both postgraduate students and young researchers interested in, or already working on, problems in cosmology and general relativity, with emphasis on the early universe. A particularly strong feature of the present work is the constructive-critical approach to the present mainstream theories, the careful assessment of some alternative approaches, and the overall balance between theoretical and observational considerations. As such, this book will also benefit experienced scientists and nonspecialists from related areas of research.
Einstein's general theory of relativity can be a notoriously difficult subject for students approaching it for the first time, with arcane mathematical concepts such as connection coefficients and tensors adorned with a forest of indices. This book is an elementary introduction to Einstein's theory and the physics of curved space-times that avoids these complications as much as possible. Its first half describes the physics of black holes, gravitational waves and the expanding Universe, without using tensors. Only in the second half are Einstein's field equations derived and used to explain the dynamical evolution of the early Universe and the creation of the first elements. Each chapter concludes with problem sets and technical mathematical details are given in the appendices. This short text is intended for undergraduate physics students who have taken courses in special relativity and advanced mechanics.
The first three billion years of cosmic time were the prime epoch of galaxy formation. Characterising galaxies at this epoch is therefore crucial to achieving a major goal of modern astrophysics: to understand how galaxies such as our Milky Way emerged from the primordial density fluctuations in the early Universe and how they evolved through cosmic time. Recent major international investments in observing facilities such as the Atacama Large Millimetre Array (ALMA) and the James Webb Space Telescope (JWST) promise to provide the next leap in our understanding of this topic. This volume gathers the scientific contributions to the International Astronomical Union Symposium 352, which was devoted to this topic. The community of theoretical and observational experts discuss how we can make the most of ALMA and JWST synergies in advancing our understanding of galaxy evolution in the young Universe.
Im Alter von 21 Jahren hat W. Pauli einen Handbuchartikel zur Relativitatstheorie verfasst, der bis heute gelesen und zitiert wird. Er ist wohl der beruhmteste Text zum Thema und wurde nicht zuletzt von A. Einstein begeistert gewurdigt. Die vorliegende Neuausgabe enthalt den Originalartikel sowie weitere, teilweise recht ausfuhrliche Erganzungen, die Pauli im Jahre 1956 fur die englische Ausgabe schrieb. Eine Reihe von Anmerkungen des Herausgebers dienen daruber hinaus als Lesehilfen und zeigen Verbindungen zu modernen Entwicklungen auf."
A sweeping tour of the infrared universe as seen through the eyes of NASA's Spitzer Space Telescope Astronomers have been studying the heavens for thousands of years, but until recently much of the cosmos has been invisible to the human eye. Launched in 2003, the Spitzer Space Telescope has brought the infrared universe into focus as never before. Michael Werner and Peter Eisenhardt are among the scientists who worked for decades to bring this historic mission to life. Here is their inside story of how Spitzer continues to carry out cutting-edge infrared astronomy to help answer fundamental questions that have intrigued humankind since time immemorial: Where did we come from? How did the universe evolve? Are we alone? In this panoramic book, Werner and Eisenhardt take readers on a breathtaking guided tour of the cosmos in the infrared, beginning in our solar system and venturing ever outward toward the distant origins of the expanding universe. They explain how astronomers use the infrared to observe celestial bodies that are too cold or too far away for their light to be seen by the eye, to conduct deep surveys of galaxies as they appeared at the dawn of time, and to peer through dense cosmic clouds that obscure major events in the life cycles of planets, stars, and galaxies. Featuring many of Spitzer's spectacular images, More Things in the Heavens provides a thrilling look at how infrared astronomy is aiding the search for exoplanets and extraterrestrial life, and transforming our understanding of the history and evolution of our universe.
From Brian Greene, one of the world's leading physicists and author
the Pulitzer Prize finalist "The Elegant Universe," comes a grand
tour of the universe that makes us look at reality in a completely
different way.
With a focus on modified gravity this book presents a review of the recent developments in the fields of gravity and cosmology, presenting the state of the art, high-lighting the open problems, and outlining the directions of future research. General Relativity and the CDM framework are currently the standard lore and constitute the concordance paradigm of cosmology. Nevertheless, long-standing open theoretical issues, as well as possible new observational ones arising from the explosive development of cosmology in the last two decades, offer the motivation and lead a large amount of research to be devoted in constructing various extensions and modifications. In this review all extended theories and scenarios are first examined under the light of theoretical consistency, and are then applied in various geometrical backgrounds, such as the cosmological and the spherical symmetric ones. Their predictions at both the background and perturbation levels, and concerning cosmology at early, intermediate and late times, are then confronted with the huge amount of observational data that astrophysics and cosmology has been able to offer in the last two decades. Theories, scenarios and models that successfully and efficiently pass the above steps are classified as viable and are candidates for the description of Nature, allowing readers to get a clear overview of the state of the art and where the field of modified gravity is likely to go. This work was performed in the framework of the COST European Action "Cosmology and Astrophysics Network for Theoretical Advances and Training Actions" - CANTATA. |
![]() ![]() You may like...
The Parallel Election - A Blueprint for…
Gregory Stenstrom, Leah Hoopes
Hardcover
R1,028
Discovery Miles 10 280
Idaho Ruffed Grouse Hunting - The…
Andrew Marshall Wayment
Paperback
|