Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Astronomy, space & time > Cosmology & the universe
Explores how the Universe, our planet, ourselves, and everything in existence has inherent meaning and evolutionary purpose * Examines our emergence as self-aware members of a Universe that is itself a unified and innately sentient entity that exists TO evolve * Shares leading-edge scientific breakthroughs and shows how they support traditional visions of Earth as a living being--Gaia * Rewrites evolution as not driven by random occurrences and mutations but by intelligently informed and meaningful information flows and processes Exploring our emergence as self-aware members of a planetary home and entire Universe that is a unified and innately sentient entity, Jude Currivan, Ph.D., shows that mind and consciousness are not what we possess but what we and the whole world fundamentally are. She reveals our Universe as "a great thought of cosmic mind," manifesting as a cosmic hologram of meaningful in-formation that, vitally, exists to evolve. Sharing scientific breakthroughs, the author details the 13.8 billion-year story of our Universe and Gaia, where everything in existence has inherent meaning and evolutionary purpose. Showing how the Universe was born, not in an implicitly chaotic big bang, but as the first moment of a fine-tuned and ongoing "big breath," she shares the latest evidence for the innate sentience that has guided our universal journey from simplicity to ever-greater complexity, diversity, and self-awareness--from protons to planets, plants, and people. She explains how evolution is not driven by random occurrences and mutations but by profoundly resonant and harmonic interplays of forces and influences, each intelligently informed and guided. In Gaia, the Universe's evolutionary impulse is embodied in collaborative relationships and dynamic co-evolutionary partnerships on a planetary scale and as a wholistic gaiasphere. She reveals how the conscious evolution of humanity is an integral part of Gaia's own evolutionary progress and purpose. By perceiving and experiencing our planet as a sentient being and ourselves as Gaians, we open ourselves to a deeply ecological, evolutionary, and, above all, hopeful worldview.
Beyond Einstein: Perspectives on Geometry, Gravitation, and Cosmology explores the rich interplay between mathematical and physical ideas by studying the interactions of major actors and the roles of important research communities over the course of the last century.
The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis, their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and the statistical mechanics in the expanding Universe, before discussing the history of neutrinos in chronological order from the very early stages until today. This timely book will interest graduate students and researchers in astrophysics, cosmology and particle physics, who work with either a theoretical or experimental focus.
Where did we come from? Before there was life there had to be something to live on - a planet, a solar system. During the past 200 years, astronomers and geologists have developed and tested several different theories about the origin of the solar system and the nature of the Earth. Together, the three volumes that make up A History of Modern Planetary Physics present a survey of these theories. The early twentieth century saw the replacement of the Nebular Hypothesis with the Chamberlain-Moulton theory that the solar system resulted from the encounter of the Sun with a passing star. Fruitful Encounters follows the eventual refutation of the encounter theory and the subsequent revival of a modernised Nebular Hypothesis. Professor Brush also discusses the role of findings from the Apollo space programme, especially the analysis of lunar samples, culminating in the establishment, in the 1980s, of the 'giant impact' theory of the Moon's origin.
"If you buy just one guide...you won't do better than this" BBC Sky at Night Magazine "I will continue to enjoy 'Philip's Stargazing' as the months go by" Helen Sharman, Astronaut "Very useful indeed" Chris Lintott, Sky at Night presenter Now including the top astronomical places to visit, star festivals and the latest on star parties in Britain and Ireland, the new 2023 edition is totally up-to-date for exploring the wonder of the night skies, month-by-month and day-by-day. Whether you're a seasoned astronomer or just starting out, Philip's Stargazing 2023 is the only book you'll need. Compiled by experts and specially designed for easy and daily use, Stargazing 2023 acts as a handily illustrated and comprehensive companion. - 12 updated sky charts for year-round astronomical discovery - Month-to-Month information. Daily Moon Phase Calendar, highlighting special lunar events throughout the year - Planet Watch for ideal viewing days in 2023 - The best places to experience Dark Skies, along with the latest on Star Festivals and Star Parties - Top places to visit for astronomical insights - Expert advice and insight throughout from internationally renowned Prof Nigel Henbest - The latest on electronic telescopes from expert Robin Scagell - Complete calendar of major astronomical events, including the Top 20 Sky Sights of 2023 - Jargon Buster, explaining common or confusing terms - The planets' movements explained from solar and lunar eclipses to meteor showers and comets
High time-resolution astrophysics (HTRA) involves measuring and studying astronomical phenomena on timescales of seconds to milliseconds. Although many areas of astronomy, such as X-ray astronomy and pulsar observations, have traditionally required high time-resolution studies, HTRA techniques are now being applied to optical, infrared and gamma-ray wavelength regimes, due to the development of high efficiency detectors and larger telescopes that can gather photons at a higher rate. With lectures from eminent scientists aimed at young researchers and postdoctorate students in observational astronomy and astrophysics, this volume gives a practical overview and introduction to the tools and techniques of HTRA. Just as multi-spectral observations of astrophysical phenomena are already yielding new scientific results, many astronomers are optimistic that exploring the time domain will open up an important new frontier in observational astronomy over the next decade.
This introduction to automorphic forms on adelic groups G(A) emphasises the role of representation theory. The exposition is driven by examples, and collects and extends many results scattered throughout the literature, in particular the Langlands constant term formula for Eisenstein series on G(A) as well as the Casselman-Shalika formula for the p-adic spherical Whittaker function. This book also covers more advanced topics such as spherical Hecke algebras and automorphic L-functions. Many of these mathematical results have natural interpretations in string theory, and so some basic concepts of string theory are introduced with an emphasis on connections with automorphic forms. Throughout the book special attention is paid to small automorphic representations, which are of particular importance in string theory but are also of independent mathematical interest. Numerous open questions and conjectures, partially motivated by physics, are included to prompt the reader's own research.
You've got questions: about space, time, gravity, and the odds of meeting your older self inside a wormhole. All the answers you need are right here. As a species, we may not agree on much, but one thing brings us all together: a need to know. We all wonder, and deep down we all have the same big questions. Why can't I travel back in time? Where did the universe come from? What's inside a black hole? Can I rearrange the particles in my cat and turn it into a dog? Physics professor Daniel Whiteson and researcher-turned-cartoonist Jorge Cham are experts at explaining science in ways we can all understand, in their books and on their popular podcast, Daniel and Jorge Explain the Universe. With their signature blend of humour and oh-now-I-get-it clarity, Jorge and Daniel offer short, accessible, and lighthearted answers to some of the most common, most outrageous, and most profound questions about the universe they've been asked. This witty, entertaining, and fully illustrated book is an essential troubleshooting guide for the perplexing aspects of reality, big and small, from the invisible particles that make up your body to the identical version of you currently reading this exact sentence in the corner of some other galaxy. If the universe came with an FAQ, this would be it.
In Losing the Nobel Prize, cosmologist and inventor of the BICEP (Background Imaging of Cosmic Extragalactic Polarization) experiment Brian Keating tells the inside story of BICEP2's mesmerising discovery and the scientific drama that ensued. In an adventure story that spans the globe, Keating takes us on a personal journey of revelation and discovery, bringing to vivid life the highly competitive, take-no-prisoners, publish-or-perish world of modern science. Along the way, he provocatively argues that the Nobel Prize, instead of advancing scientific progress, may actually hamper it, encouraging speed and greed while punishing collaboration and bold innovation.
The relationship between the human soul and the stars has been central to the spiritual and esoteric traditions of Western thought, and many other cultures, for thousands of years. Medieval Christians thought that heaven was located above the earth, beyond the stars. Our modern society, however, has largely severed the relationship between the human spirit and the sky. This book explores ideas, beliefs and practices which meet at the boundary of psychology and cosmology, the universe and human imagination. This book addresses this special relationship from a variety of challenging and inspiring approaches. The contributors include James Hillman, the founder of archetypal psychology and Jungian analyst; astrologer Liz Greene; Professor Neville Brown of Mansfield College, Oxford; Nicholas Pearson of the Temenos Academy; Professor Jarita Holbrook of the University of Arizona; Dr Angela Vos of the University of Kent; Bernadette Brady; Jules Cashford; Noel Cobb, the former editor of Sphinx; Cherry Gilchrist; Robert Hand; and Professor Richard Tarnas of the California Institute of Integral Studies.
Recent advances in the understanding of star formation and evolution have been impressive and aspects of that knowledge are explored in this volume. The black hole stellar endpoints are studied and geodesic motion is explored. The emission of gravitational waves is featured due to their very recent experimental discovery.The second aspect of the text is space exploration which began 62 years ago with the Sputnik Earth satellite followed by the landing on the Moon just 50 years ago. Since then Mars has been explored remotely as well as flybys of the outer planets and probes which have escaped the solar system. The text explores many aspects of rocket travel. Finally possibilities for interstellar travel are discussed.All these topics are treated in a unified way using the Matlab App to combine text, figures, formulae and numeric input and output. In this way the reader may vary parameters and see the results in real time. That experience aids in building up an intuitive feel for the many specific problems given in this text.
For the past 20 years causality violations and superluminal motion have been the object of intensive study as physical and geometrical phenomena. This book compiles the results of its author and also reviews other work in the field. In particular, the following popular questions are addressed: Is causality protected by quantum divergence at the relevant Cauchy horizon? How much "exotic matter" would it take to create a time machine or a warp drive? What is the difference between a "discovered" time machine and a created one? Why does a time traveler fail to kill their grandfather? How should we define the speed of gravity and what is its magnitude?
Cosmochemistry is a rapidly evolving field of planetary science and the second edition of this classic text reflects the exciting discoveries made over the past decade from new spacecraft missions. Topics covered include the synthesis of elements in stars, behaviour of elements and isotopes in the early solar nebula and planetary bodies, and compositions of extra-terrestrial materials. Radioisotope chronology of the early Solar System is also discussed, as well as geochemical exploration of planets by spacecraft, and cosmochemical constraints on the formation of solar systems. Thoroughly updated throughout, this new edition features significantly expanded coverage of chemical fractionation and isotopic analyses; focus boxes covering basic definitions and essential background material on mineralogy, organic chemistry and quantitative topics; and a comprehensive glossary. An appendix of analytical techniques and end-of-chapter review questions, with solutions available at www.cambridge.org/cosmochemistry2e, also contribute to making this the ideal teaching resource for courses on the Solar System's composition as well as a valuable reference for early career researchers.
This second edition of Introduction to Cosmology is an exciting update of an award-winning textbook. It is aimed primarily at advanced undergraduate students in physics and astronomy, but is also useful as a supplementary text at higher levels. It explains modern cosmological concepts, such as dark energy, in the context of the Big Bang theory. Its clear, lucid writing style, with a wealth of useful everyday analogies, makes it exceptionally engaging. Emphasis is placed on the links between theoretical concepts of cosmology and the observable properties of the universe, building deeper physical insights in the reader. The second edition includes recent observational results, fuller descriptions of special and general relativity, expanded discussions of dark energy, and a new chapter on baryonic matter that makes up stars and galaxies. It is an ideal textbook for the era of precision cosmology in the accelerating universe.
A self-contained text, systematically presenting the determination and classification of exact solutions in three-dimensional Einstein gravity. This book explores the theoretical framework and general physical and geometrical characteristics of each class of solutions, and includes information on the researchers responsible for their discovery. Beginning with the physical character of the solutions, these are identified and ordered on the basis of their geometrical invariant properties, symmetries, and algebraic classifications, or from the standpoint of their physical nature, for example electrodynamic fields, fluid, scalar field, or dilaton. Consequently, this text serves as a thorough catalogue on 2+1 exact solutions to the Einstein equations coupled to matter and fields. The solutions are also examined from different perspectives, enabling a conceptual bridge between exact solutions of three- and four-dimensional gravities, and therefore providing graduates and researchers with an invaluable resource on this important topic in gravitational physics. Including contributions by David Chow, Christopher N. Pope and Ergin Sezgin (chapters 16-19).
This is a reference source for professional and student astrologers alike. The book has been published annually since 1821. It gives the longitudes of all the planets for each day and their latitudes and declinations for every other day, and includes tables of houses for London, Liverpool and New York. The book also contains complete lunar and planetary aspectarians together with all the neccessary data for casting horoscopes for all places in the world, both north and south of the Equator.
One of the most powerful questions we ask about the cosmos is: Are we alone? The Possibility of Life traces the history of our understanding of what and where life in the universe could be, from Galileo and Copernicus through to our current tracking of exoplanets in the Goldilocks zone, where life akin to ours on Earth might exist. Along the way, Jaime Green studies insights from a long tradition of science fiction that uses imagination to extrapolate and construct worlds, in turn inspiring scientists and their research. Bringing together expert interviews, cutting-edge astronomy, philosophical inquiry and pop culture touchstones ranging from A Wrinkle in Time to Star Trek, The Possibility of Life delves into our evolving conception of the cosmos to pose an even deeper question: what does it mean to be human?
Gravitational lensing is a consequence of general relativity, where the gravitational force due to a massive object bends the paths of light originating from distant objects lying behind it. Using very little general relativity and no higher level mathematics, this text presents the basics of gravitational lensing, focusing on the equations needed to understand the phenomena. It then applies them to a diverse set of topics, including multiply imaged objects, time delays, extrasolar planets, microlensing, cluster masses, galaxy shape measurements, cosmic shear, and lensing of the cosmic microwave background. This approach allows undergraduate students and others to get quickly up to speed on the basics and the important issues. The text will be especially relevant as large surveys such as LSST and Euclid begin to dominate the astronomical landscape. Designed for a one semester course, it is accessible to anyone with two years of undergraduate physics background.
This White Paper describes the state of astrobiology in Europe today and its relation to the European society at large. With contributions from authors in twenty countries and over thirty scientific institutions worldwide, the document illustrates the societal implications of astrobiology and the positive contribution that astrobiology can make to European society. The White paper has two main objectives: 1. It recommends the establishment of a European Astrobiology Institute (EAI) as an answer to a series of challenges relating to astrobiology but also European research, education and the society at large. 2. It also acknowledges the societal implications of astrobiology, and thus the role of the social sciences and humanities in optimizing the positive contribution that astrobiology can make to the lives of the people of Europe and the challenges they face. This book is recommended reading for science policy makers, the interested public, and the astrobiology community.
"It is said that fact is sometimes stranger than fiction, and nowhere is that more true than in the case of black holes. Black holes are stranger than anything dreamed up by science fiction writers." In 2016 Professor Stephen Hawking delivered the BBC Reith Lectures on a subject that fascinated him for decades - black holes. In these flagship lectures the legendary physicist argued that if we could only understand black holes and how they challenge the very nature of space and time, we could unlock the secrets of the universe.
In this thought-provoking book Kuppers, an internationally renowned physicist, philosopher and theoretical biologist, addresses a number of science's deepest questions: Can physics advance to the origin of all things and explain the unique phenomena of life, time and history? Are there unsolvable enigmas of the world? How did life originate? Is language a general phenomenon of Nature? What is time? Is it possible to express the history of the world in formulae? Where is science leading us? These and other provocative questions essential for a deeper understanding of the world are treated here in a refreshing and stimulating manner.
Relativistic kinetic theory has widespread application in astrophysics and cosmology. The interest has grown in recent years as experimentalists are now able to make reliable measurements on physical systems where relativistic effects are no longer negligible. This ambitious monograph is divided into three parts. It presents the basic ideas and concepts of this theory, equations and methods, including derivation of kinetic equations from the relativistic BBGKY hierarchy and discussion of the relation between kinetic and hydrodynamic levels of description. The second part introduces elements of computational physics with special emphasis on numerical integration of Boltzmann equations and related approaches, as well as multi-component hydrodynamics. The third part presents an overview of applications ranging from covariant theory of plasma response, thermalization of relativistic plasma, comptonization in static and moving media to kinetics of self-gravitating systems, cosmological structure formation and neutrino emission during the gravitational collapse.
This book discusses the notion that quantum gravity may represent the "breakdown" of spacetime at extremely high energy scales. If spacetime does not exist at the fundamental level, then it has to be considered "emergent", in other words an effective structure, valid at low energy scales. The author develops a conception of emergence appropriate to effective theories in physics, and shows how it applies (or could apply) in various approaches to quantum gravity, including condensed matter approaches, discrete approaches, and loop quantum gravity.
This work deals with the search for signatures of non-Gaussianities in the cosmic microwave background (CMB). Probing Gaussianity in the CMB addresses one of the key questions in modern cosmology because it allows us to discriminate between different models of inflation, and thus concerns a fundamental part of the standard cosmological model. The basic goal here is to adapt complementary methods stemming from the field of complexity science to CMB data analysis. Two key concepts, namely the method of surrogates and estimators for local scaling properties, are applied to CMB data analysis. All results show strong non-Gaussianities and pronounced asymmetries. The consistency of the full sky and cut sky results shows convincingly for the first time that the influence of the Galactic plane is not responsible for these deviations from Gaussianity and isotropy. The findings seriously call into question predictions of isotropic cosmologies based on the widely accepted single field slow roll inflation model.
This book is the first all-encompassing exploration of the role of demons in philosophical and scientific thought experiments. In Part I, the author explains the importance of thought experiments in science and philosophy. Part II considers Laplace's Demon, whose claim is that the world is completely deterministic. Part III introduces Maxwell's Demon, who - by contrast - experiences a world that is probabilistic and indeterministic. Part IV explores Nietzsche's thesis of the cyclic and eternal recurrence of events. In each case a number of philosophical consequences regarding determinism and indeterminism, the arrows of time, the nature of the mind and free will are said to follow from the Demons's worldviews. The book investigates what these Demons - and others - can and cannot tell us about our world. |
You may like...
A Brief History Of Time - From Big Bang…
Stephen Hawking
Paperback
(4)
The Disordered Cosmos - A Journey Into…
Chanda Prescod-Weinstein
Hardcover
Starry Messenger - Cosmic Perspectives…
Neil De Grasse Tyson
Paperback
|