Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Astronomy, space & time > Cosmology & the universe
From supernovae and gamma-ray bursts to the accelerating Universe, this is an exploration of the intellectual threads that lead to some of the most exciting ideas in modern astrophysics and cosmology. This fully updated second edition incorporates new material on binary stars, black holes, gamma-ray bursts, worm-holes, quantum gravity and string theory. It covers the origins of stars and their evolution, the mechanisms responsible for supernovae, and their progeny, neutron stars and black holes. It examines the theoretical ideas behind black holes and their manifestation in observational astronomy and presents neutron stars in all their variety known today. This book also covers the physics of the twentieth century, discussing quantum theory and Einstein's gravity, how these two theories collide, and the prospects for their reconciliation in the twenty-first century. This will be essential reading for undergraduate students in astronomy and astrophysics, and an excellent, accessible introduction for a wider audience.
This book sheds new light on topological defects in widely differing systems, using the Velocity-Dependent One-Scale Model to better understand their evolution. Topological defects - cosmic strings, monopoles, domain walls or others - necessarily form at cosmological (and condensed matter) phase transitions. If they are stable and long-lived they will be fossil relics of higher-energy physics. Understanding their behaviour and consequences is a key part of any serious attempt to understand the universe, and this requires modelling their evolution. The velocity-dependent one-scale model is the only fully quantitative model of defect network evolution, and the canonical model in the field. This book provides a review of the model, explaining its physical content and describing its broad range of applicability.
This thesis addresses two of the central processes which underpin the formation of galaxies: the formation of stars and the injection of energy into the interstellar medium from supernovae, called feedback. In her work Claudia Lagos has completely overhauled the treatment of these processes in simulations of galaxy formation. Her thesis makes two major breakthroughs, and represents the first major steps forward in these areas in more than a decade. Her work has enabled, for the first time, predictions to be made which can be compared against new observations which probe the neutral gas content of galaxies, opening up a completely novel way to constrain the models. The treatment of feedback from supernovae, and how this removes material from the interstellar medium, is also likely to have a lasting impact on the field. Claudia Lagos Ph.D. thesis was nominated by the Institute for Computational Cosmology at Durham University as an outstanding Ph.D. thesis 2012.
Delineating the huge strides taken in cosmology in the past ten years, this much-anticipated second edition of Malcolm Longair's highly appreciated textbook has been extensively and thoroughly updated. It tells the story of modern astrophysical cosmology from the perspective of one of its most important and fundamental problems - how did the galaxies come about? Longair uses this approach to introduce the whole of what may be called "classical cosmology". What's more, he describes how the study of the origin of galaxies and larger-scale structures in the Universe has provided us with direct information about the physics of the very early Universe.
In the first chapters the author describes how our knowledge of the position of Earth in space and time has developed, thanks to the work of many generations of astronomers and physicists. He discusses how our position in the Galaxy was discovered, and how in 1929, Hubble uncovered the fact that the Universe is expanding, leading to the picture of the Big Bang. He then explains how astronomers have found that the laws of physics that were discovered here on Earth and in the Solar System (the laws of mechanics, gravity, atomic physics, electromagnetism, etc.) are valid throughout the Universe. This is illustrated by the fact that all matter in the Universe consists of atoms of the same chemical elements that we know on Earth. This unity is all the more surprising when one realizes that in the original Big Bang theory, different parts of the Universe could never have communicated with each other. It then is a mystery how they could have shared the same physical laws. This problem was solved by the introduction of the idea of inflation, a phase of extremely rapid expansion of the Universe during the first fraction of a second following the Big Bang. The author explains how the unity of the Universe finds its origin in the Big Bang prior to inflation. The book addresses the many fundamental questions about the Universe and its contents from the perspective of the Big Bang: the formation of structure in the Universe, the questions of the mysterious dark matter and dark energy, the possibilities of other Universes (the Multiverse) and of the existence of intelligent life elsewhere in the Universe.
In recent years cosmologists have advanced from largely qualitative models of the Universe to precision modelling using Bayesian methods, in order to determine the properties of the Universe to high accuracy. This timely book is the only comprehensive introduction to the use of Bayesian methods in cosmological studies, and is an essential reference for graduate students and researchers in cosmology, astrophysics and applied statistics. The first part of the book focuses on methodology, setting the basic foundations and giving a detailed description of techniques. It covers topics including the estimation of parameters, Bayesian model comparison, and separation of signals. The second part explores a diverse range of applications, from the detection of astronomical sources (including through gravitational waves), to cosmic microwave background analysis and the quantification and classification of galaxy properties. Contributions from 24 highly regarded cosmologists and statisticians make this an authoritative guide to the subject.
'Dark energy' is the name given to the unknown cause of the Universe's accelerating expansion, which is one of the most significant and surprising discoveries in recent cosmology. Understanding this enigmatic ingredient of the Universe and its gravitational effects is a very active, and growing, field of research. In this volume, twelve world-leading authorities on the subject present the basic theoretical models that could explain dark energy, and the observational and experimental techniques employed to measure it. Covering the topic from its origin, through recent developments, to its future perspectives, this book provides a complete and comprehensive introduction to dark energy for a range of readers. It is ideal for physics graduate students who have just entered the field and researchers seeking an authoritative reference on the topic.
Most astronomers and physicists now believe that the matter content of the Universe is dominated by dark matter: hypothetical particles which interact with normal matter primarily through the force of gravity. Though invisible to current direct detection methods, dark matter can explain a variety of astronomical observations. This book describes how this theory has developed over the past 75 years, and why it is now a central feature of extragalactic astronomy and cosmology. Current attempts to directly detect dark matter locally are discussed, together with the implications for particle physics. The author comments on the sociology of these developments, demonstrating how and why scientists work and interact. Modified Newtonian Dynamics (MOND), the leading alternative to this theory, is also presented. This fascinating overview will interest cosmologists, astronomers and particle physicists. Mathematics is kept to a minimum, so the book can be understood by non-specialists.
This volume presents the lectures of the nineteenth Canary Islands Winter School, dedicated to the Cosmic Microwave Background (CMB). This relict radiation from the very early Universe provides a fundamental tool for precision cosmology. Prestigious researchers in the field present a comprehensive overview of current knowledge of the CMB, reviewing the theoretical foundations, the main observational results and the most advanced statistical techniques used in this discipline. The lectures give coverage from the basic principles to the most recent research results, reviewing state of the art observational and statistical analysis techniques. The impact of new experiments and the constraints imposed on cosmological parameters are emphasized and put into the broader context of research in cosmology. This is an important resource for both graduate students and experienced researchers, revealing the spectacular progress that has been made in the study of the CMB within the last decade.
Astrophysicist and scholar Martin Harwit examines how our understanding of the cosmos advanced rapidly during the twentieth century and identifies the factors contributing to this progress. Astronomy, whose tools were largely imported from physics and engineering, benefited mid-century from the US policy of coupling basic research with practical national priorities. This strategy, initially developed for military and industrial purposes, provided astronomy with powerful tools yielding access - at virtually no cost - to radio, infrared, X-ray, and gamma-ray observations. Today, astronomers are investigating the new frontiers of dark matter and dark energy, critical to understanding the cosmos but of indeterminate socio-economic promise. Harwit addresses these current challenges in view of competing national priorities and proposes alternative new approaches in search of the true Universe. This is an engaging read for astrophysicists, policy makers, historians, and sociologists of science looking to learn and apply lessons from the past in gaining deeper cosmological insight.
One of the most fascinating unresolved problems of modern astrophysics is how the galaxies we observe today were formed. The Lambda-Cold Dark Matter paradigm predicts that large spiral galaxies such as the Milky Way formed through accretion and tidal disruption of satellite galaxies. The galaxies of the Local Group provide the best laboratory in which to investigate these galaxy formation processes because they can be studied with sufficiently high resolution to exhume fossils of galactic evolution embedded in the spatial distribution, kinematics, and chemical abundances of their oldest stars. Based on the twentieth Winter School of the Canary Islands Institute of Astrophysics, this volume provides a firm grounding for graduate students and early career researchers working on Local Group cosmology. It presents modules from eight eminent and experienced scientists at the forefront of Local Group research, and includes overviews of observational techniques, diagnostic tools, and various theoretical models.
We have just concluded a remarkable century: the 1917 publication of Einstein's general theory of relativity, Carnegie astronomer Edwin Hubble's 1929 discovery of the expansion of the universe, evidence for the existence of dark matter, and the discovery of a mysterious dark energy, which is causing the universe to speed up its expansion. This comprehensive volume reviews the current theory and measurement of various parameters related to the evolution of the universe. Topics include inflation, string theory, the history of cosmology in the context of current measurements being made of the Hubble constant, the matter density, and dark energy, including observational results from the Sloan, Digital Sky Survey, Keck, Magellan, cosmic microwave background experiments, Hubble space telescope and Chandra. With chapters by leading authorities in the field, this book is a valuable resource for graduate students and professional research astronomers.
Astronomer Peter Linde takes the reader through the story of the search for extraterrestrial life in a captivating and thought-provoking way, specifically addressing the new research that is currently devoted towards discovering other planets with life. He discusses the methods used to detect possible signals from other civilizations and the ways that the space sciences are changing as a result of this new field. "Are we alone?" is a mystery that has forever fascinated mankind, gaining momentum by scientists since the 1995 discovery of the existence of exoplanets began to inspire new ways of thinking in astronomy. Here, Linde tries to answer many philosophical questions that derive from this area of research: Is humanity facing a change of paradigm, that we are not unique as intelligent beings? Is it possible to communicate with others out there, and even if we can-should we?
By the time of his death, William Herschel (1738-1822) had built revolutionary telescopes, identified hundreds of binary stars, and published astronomical papers in over forty volumes of the Royal Society's Philosophical Transactions. This two-volume collection, which originally appeared in 1912, was the first to gather together his scattered publications. It draws also on a wealth of previously unpublished material, from personal letters to numerous papers presented to the Philosophical Society of Bath. Although Herschel is best known for his discovery of Uranus, this collection highlights the true range of his observations and interests. Focusing on his early work, Volume 1 includes notes on the discovery of Uranus, unpublished papers on electricity, and studies of the lunar mountains and the poles of Mars - both of which he believed to be inhabited. It also features a biographical account by the historian of astronomy J. L. E. Dreyer.
By the time of his death, William Herschel (1738-1822) had built revolutionary telescopes, identified hundreds of binary stars, and published astronomical papers in over forty volumes of the Royal Society's Philosophical Transactions. This two-volume collection, which originally appeared in 1912, was the first to gather together his scattered publications. It draws also on a wealth of previously unpublished material, from personal letters to numerous papers presented to the Philosophical Society of Bath. Although Herschel is best known for his discovery of Uranus, this collection highlights the true range of his observations and interests. Focusing on his later work, Volume 2 includes notes on some of the moons of Uranus, studies of solar heat and the atmosphere of Saturn, and some practical experiments investigating the capabilities of contemporary telescopes. It also features an appendix of work compiled by his son, John Herschel, and sister Caroline.
The Early Universe has become the standard reference on forefront topics in cosmology, particularly to the early history of the Universe. Subjects covered include primordial nubleosynthesis, baryogenesis, phases transitions, inflation, dark matter, and galaxy formation, relics such as axions, neutrinos and monopoles, and speculations about the Universe at the Planck time. The book includes more than ninety figures as well as a five-page update discussing recent developments such as the COBE results.
Numerical relativity has emerged as the key tool to model gravitational waves - recently detected for the first time - that are emitted when black holes or neutron stars collide. This book provides a pedagogical, accessible, and concise introduction to the subject. Relying heavily on analogies with Newtonian gravity, scalar fields and electromagnetic fields, it introduces key concepts of numerical relativity in a context familiar to readers without prior expertise in general relativity. Readers can explore these concepts by working through numerous exercises, and can see them 'in action' by experimenting with the accompanying Python sample codes, and so develop familiarity with many techniques commonly employed by publicly available numerical relativity codes. This is an attractive, student-friendly resource for short courses on numerical relativity, as well as providing supplementary reading for courses on general relativity and computational physics.
This book gives an accessible account of the history of the Universe; not only what happened, but why it happened. An author of textbooks on the early Universe and inflation, David Lyth now explains both cosmology and the underlying physics to the general reader. The book includes a detailed account of the almost imperceptible structure in the early Universe, and its probable origin as a quantum fluctuation during an early epoch known as the epoch of inflation. It also explains how that early structure is visible now in the cosmic microwave radiation which is our main source of information about the early Universe, and how it gave rise to galaxies and stars. The main text of the book assumes no knowledge of mathematics or physics so that it is accessible to everybody, while an appendix contains more advanced material. As a result the book will be useful for a wide spectrum of readers, including high-school students, undergraduates, postgraduates and professional physicists working in areas other than cosmology. It will also serve as "additional reading" for university courses in general astronomy, astrophysics or cosmology itself.
Exploring how information is more fundamental than energy, matter, space, or time, Jude Currivan, Ph.D., examines the latest research across many fields of study and many scales of existence to show how our Universe is in-formed and holographically manifested. She explains how the fractal in-formational patterns that guide behavior at the atomic level also guide the structure of galactic clusters in space. She demonstrates how the in-formational relationships that underlie earthquakes are the same as those that play out during human conflicts. She shows how cities grow in the same in-formational ways that galaxies evolve and how the dynamic in-formational forms that pervade ecosystems are identical to the informational structures of the Internet and our social behaviors. Demonstrating how information is physically real, the author explores how consciousness connects us to the many interconnected layers of universal in-formation, making us both manifestations and co-creators of the cosmic hologram of reality. She explains how Quantum Mechanics and Einstein's Theory of Relativity can at last be reconciled if we consider energy-matter and space-time as complementary expressions of information, and she explores how the cosmic hologram underlies the true origin of species and our own evolution.
The first three billion years of cosmic time were the prime epoch of galaxy formation. Characterising galaxies at this epoch is therefore crucial to achieving a major goal of modern astrophysics: to understand how galaxies such as our Milky Way emerged from the primordial density fluctuations in the early Universe and how they evolved through cosmic time. Recent major international investments in observing facilities such as the Atacama Large Millimetre Array (ALMA) and the James Webb Space Telescope (JWST) promise to provide the next leap in our understanding of this topic. This volume gathers the scientific contributions to the International Astronomical Union Symposium 352, which was devoted to this topic. The community of theoretical and observational experts discuss how we can make the most of ALMA and JWST synergies in advancing our understanding of galaxy evolution in the young Universe.
This work deals with the search for signatures of non-Gaussianities in the cosmic microwave background (CMB). Probing Gaussianity in the CMB addresses one of the key questions in modern cosmology because it allows us to discriminate between different models of inflation, and thus concerns a fundamental part of the standard cosmological model. The basic goal here is to adapt complementary methods stemming from the field of complexity science to CMB data analysis. Two key concepts, namely the method of surrogates and estimators for local scaling properties, are applied to CMB data analysis. All results show strong non-Gaussianities and pronounced asymmetries. The consistency of the full sky and cut sky results shows convincingly for the first time that the influence of the Galactic plane is not responsible for these deviations from Gaussianity and isotropy. The findings seriously call into question predictions of isotropic cosmologies based on the widely accepted single field slow roll inflation model.
The twentieth-century witnessed the development of astrophysics and cosmology from subjects which scarcely existed to two of the most exciting and demanding areas of contemporary scientific inquiry. In this book Malcolm Longair reviews the historical development of the key areas of modern astrophysics, linking the strands together to show how they have led to the extraordinarily rich panorama of modern astrophysics and cosmology. While many of the great discoveries were derived from pioneering observations, the emphasis is upon the development of theoretical concepts and how they came to be accepted. These advances have led astrophysicists and cosmologists to ask some of the deepest questions about the nature of our Universe and have pushed astronomical observations to the very limit. This is a fantastic story, and one which would have defied the imaginations of even the greatest story-tellers.
This book overviews the extensive literature on apparent cosmological and black hole horizons. In theoretical gravity, dynamical situations such as gravitational collapse, black hole evaporation, and black holes interacting with non-trivial environments, as well as the attempts to model gravitational waves occurring in highly dynamical astrophysical processes, require that the concept of event horizon be generalized. Inequivalent notions of horizon abound in the technical literature and are discussed in this manuscript. The book begins with a quick review of basic material in the first one and a half chapters, establishing a unified notation. Chapter 2 reminds the reader of the basic tools used in the analysis of horizons and reviews the various definitions of horizons appearing in the literature. Cosmological horizons are the playground in which one should take baby steps in understanding horizon physics. Chapter 3 analyzes cosmological horizons, their proposed thermodynamics, and several coordinate systems. The remaining chapters discuss analytical solutions of the field equations of General Relativity, scalar-tensor, and f(R) gravity which exhibit time-varying apparent horizons and horizons which appear and/or disappear in pairs. An extensive bibliography enriches the volume. The intended audience is master and PhD level students and researchers in theoretical physics with knowledge of standard gravity.
Storms in Space is the story of the mysterious region between Earth and the Sun, where violent storms rage unseen by human eyes. Disruption of spacecraft and satellites, television transmission failures and power blackouts are just a few of the effects of this powerful force of nature, caused by the charged particles and electromagnetic fields that dominate space. This is a highly readable synopsis of man's understanding of the space environment. The book discusses the similarities between storms on Earth and in space, and goes on to describe the causes and effects of space storms, and how they can be monitored by satellites and from observatories on Earth. The forecasting of space storms is presented, along with prospects for improved models in the future. This clear and engaging book will be valuable to space scientists, physicists, astronomers and anyone with an interest in understanding the phenomenon of space weather. |
You may like...
The Disordered Cosmos - A Journey Into…
Chanda Prescod-Weinstein
Hardcover
|