![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Astronomy, space & time > Cosmology & the universe
A rigorous and scientific analysis of the myriad possibilities of life beyond our planet. “Are we alone in the universe?†This tantalizing question has captivated humanity over millennia, but seldom has it been approached rigorously. Today the search for signatures of extraterrestrial life and intelligence has become a rapidly advancing scientific endeavor. Missions to Mars, Europa, and Titan seek evidence of life. Laboratory experiments have made great strides in creating synthetic life, deepening our understanding of conditions that give rise to living entities. And on the horizon are sophisticated telescopes to detect and characterize exoplanets most likely to harbor life. Life in the Cosmos offers a thorough overview of the burgeoning field of astrobiology, including the salient methods and paradigms involved in the search for extraterrestrial life and intelligence. Manasvi Lingam and Avi Loeb tackle three areas of interest in hunting for life “out thereâ€: first, the pathways by which life originates and evolves; second, planetary and stellar factors that affect the habitability of worlds, with an eye on the biomarkers that may reveal the presence of microbial life; and finally, the detection of technological signals that could be indicative of intelligence. Drawing on empirical data from observations and experiments, as well as the latest theoretical and computational developments, the authors make a compelling scientific case for the search for life beyond what we can currently see. Meticulous and comprehensive, Life in the Cosmos is a master class from top researchers in astrobiology, suggesting that the answer to our age-old question is closer than ever before.
- Discover how the ancient language of astrology is completely relevant to your life today. - Appreciate how astrology is a language of meaning that helps you decode your inner reality and outer experience. - Understand how your birth moment encapsulates the `information seed for all that unfolds in your life. - Learn how understanding your birthchart can help you live a bigger life, as a true co-creator.
This book looks at answers to the biggest questions in astronomy - the questions of how the planets, stars, galaxies and the universe were formed. Over the last decade, a revolution in observational astronomy has produced possible answers to three of these questions. This book describes this revolution. The one question for which we still do not have an answer is the question of the origin of the universe. In the final chapter, the author looks at the connection between science and philosophy and shows how new scientific results have laid the groundwork for the first serious scientific studies of the origin of the universe.
Einstein's general theory of relativity is introduced in this
advanced undergraduate and beginning graduate level textbook.
Topics include special relativity, in the formalism of Minkowski's
four-dimensional space-time, the principle of equivalence,
Riemannian geometry and tensor analysis, Einstein field equation,
as well as many modern cosmological subjects, from primordial
inflation and cosmic microwave anisotropy to the dark energy that
propels an accelerating universe.
A SUNDAY TIMES BOOK OF THE YEAR The No.1 bestselling author of The Future of the Mind brings us a stunning new vision of our future in space Human civilization is on the verge of living beyond Earth. But how will it happen? World-renowned physicist Michio Kaku takes us on a journey to the future, introducing the mind-boggling developments in robotics, nanotechnology and biotechnology that will one day enable us to make our homes among the stars. 'With admirable clarity and ease, Kaku explains how we might colonize not only Mars but some of the rocky moons of the gas giants Jupiter and Saturn . . . The book has an infectious, can-do enthusiasm' Steven Poole, The Wall Street Journal 'Kaku grounds his readers in science happening right now, while throwing open the windows to imagine where it might lead in a thousand years' Adam Frank, The New York Times Book Review 'Kaku is an international treasure and a man of infectious enthusiasm' The Times
Applications of quantum field theoretical methods to gravitational physics, both in the semiclassical and the full quantum frameworks, require a careful formulation of the fundamental basis of quantum theory, with special attention to such important issues as renormalization, quantum theory of gauge theories, and especially effective action formalism. The first part of this graduate textbook provides both a conceptual and technical introduction to the theory of quantum fields. The presentation is consistent, starting from elements of group theory, classical fields, and moving on to the effective action formalism in general gauge theories. Compared to other existing books, the general formalism of renormalization in described in more detail, and special attention paid to gauge theories. This part can serve as a textbook for a one-semester introductory course in quantum field theory. In the second part, we discuss basic aspects of quantum field theory in curved space, and perturbative quantum gravity. More than half of Part II is written with a full exposition of details, and includes elaborated examples of simplest calculations. All chapters include exercises ranging from very simple ones to those requiring small original investigations. The selection of material of the second part is done using the "must-know" principle. This means we included detailed expositions of relatively simple techniques and calculations, expecting that the interested reader will be able to learn more advanced issues independently after working through the basic material, and completing the exercises.
What do Virginia Woolf, the rotation of hurricanes, Babylonian kings and Einstein's General Theory Relativity all have in common? Eclipses. Always spectacular and, today, precisely predicable, eclipses have allowed us to know when the first Olympic games were played and, long before the first space probe, that the Moon was covered by dust. Eclipses have stunned, frightened, emboldened and mesmerized people for thousands of years. They were recorded on ancient turtle shells discovered in the Wastes of Yin in China, on clay tablets from Mesopotamia and on the Mayan "Dresden Codex." They are mentioned in Homer's Iliad and Odyssey and at least eight times in the Bible. Columbus used them to trick people, while Renaissance painter Taddeo Gaddi was blinded by one. Sorcery was banished within the Catholic Church after astrologers used an eclipse to predict a pope's death. In Mask of the Sun, acclaimed writer John Dvorak the importance of the number 177 and why the ancient Romans thought it was bad to have sexual intercourse during an eclipse (whereas other cultures thought it would be good luck). Even today, pregnant women in Mexico wear safety pins on their underwear during an eclipse. Eclipses are an amazing phenomena-unique to Earth-that have provided the key to much of what we now know and understand about the sun, our moon, gravity, and the workings of the universe. Both entertaining and authoritative, Mask of the Sun reveals the humanism behind the science of both lunar and solar eclipses. With insightful detail and vividly accessible prose, Dvorak provides explanations as to how and why eclipses occur-as well as insight into the forthcoming eclipse of 2017 that will be visible across North America.
Venus draws a beautiful pentagram around Earth every eight years. Jupiter's two largest moons draw a perfect four-fold flower. The Planets grandly play out the slow Music of the Spheres. Is there a secret structure hidden in the Solar System? Packed with great illustrations and serious research from many sources, this internationally bestselling little book by cosmologist John Martineau will instantly retune your cosmological circuits to the extraordinary and primary patterns behind Life, the Universe and Everything. WOODEN BOOKS are small but packed with information. "Fascinating" FINANCIAL TIMES. "Beautiful" LONDON REVIEW OF BOOKS. "Rich and Artful" THE LANCET. "Genuinely mind-expanding" FORTEAN TIMES. "Excellent" NEW SCIENTIST. "Stunning" NEW YORK TIMES. Small books, big ideas.
Is our universe dying?
"Multiverse" cosmologies imagine our universe as just one of a vast number of others. While this idea has captivated philosophy, religion, and literature for millennia, it is now being considered as a scientific hypothesis-with different models emerging from cosmology, quantum mechanics, and string theory. Beginning with ancient Atomist and Stoic philosophies, Mary-Jane Rubenstein links contemporary models of the multiverse to their forerunners and explores the reasons for their recent appearance. One concerns the so-called fine-tuning of the universe: nature's constants are so delicately calibrated that it seems they have been set just right to allow life to emerge. For some thinkers, these "fine-tunings" are evidence of the existence of God; for others, however, and for most physicists, "God" is an insufficient scientific explanation. Hence the allure of the multiverse: if all possible worlds exist somewhere, then like monkeys hammering out Shakespeare, one universe is bound to be suitable for life. Of course, this hypothesis replaces God with an equally baffling article of faith: the existence of universes beyond, before, or after our own, eternally generated yet forever inaccessible to observation or experiment. In their very efforts to sidestep metaphysics, theoretical physicists propose multiverse scenarios that collide with it and even produce counter-theological narratives. Far from invalidating multiverse hypotheses, Rubenstein argues, this interdisciplinary collision actually secures their scientific viability. We may therefore be witnessing a radical reconfiguration of physics, philosophy, and religion in the modern turn to the multiverse.
From the Nobel Prize-winning physicist, a personal meditation on the quest for objective reality in natural science A century ago, thoughtful people questioned how reality could agree with physical theories that keep changing, from a mechanical model of the ether to electric and magnetic fields, and from homogeneous matter to electrons and atoms. Today, concepts like dark matter and dark energy further complicate and enrich the search for objective reality. The Whole Truth is a personal reflection on this ongoing quest by one of the world's most esteemed cosmologists. What lies at the heart of physical science? What are the foundational ideas that inform and guide the enterprise? Is the concept of objective reality meaningful? If so, do our established physical theories usefully approximate it? P. J. E. Peebles takes on these and other big questions about the nature of science, drawing on a lifetime of experience as a leading physicist and using cosmology as an example. He traces the history of thought about the nature of physical science since Einstein, and succinctly lays out the fundamental working assumptions. Through a careful examination of the general theory of relativity, Einstein's cosmological principle, and the theory of an expanding universe, Peebles shows the evidence that we are discovering the nature of reality in successive approximations through increasingly rigorous scrutiny. A landmark work, The Whole Truth is essential reading for anyone interested in the practice of science.
This book discusses cosmology from both an observational and a strong theoretical perspective. The first part focuses on gravitation, notably the expansion of the universe and determination of cosmological parameters, before moving onto the main emphasis of the book, the physics of the early universe, and the connections between cosmological models and particle physics. The book provides links with particle physics and with investigations of the theories beyond the Standard Model, especially in connection to dark matter and matter-antimatter asymmetry puzzles. Readers will gain a comprehensive account of cosmology and the latest observational results, without requiring prior knowledge of relativistic theories, making the text ideal for students. Features: Provides a self-contained discussion of modern cosmology results without requiring any prior knowledge of relativistic theories, enabling students to learn the first rudiments needed for a rigorous comprehension of cosmological concepts Contains a timely discussion of the latest cosmological results, including those from WMAP and the Planck satellite, and discuss the cosmological applications of the Nobel Prize 2017 awarded discovery of gravitational waves by the LIGO interferometer and the very high energy neutrinos discovered by the IceCube detector Includes original figures complementing mathematical derivations and accounting for the most important cosmological observations, in addition to a wide variety of problems with a full set of solutions discussed in detail in an accompanying solutions manual (available upon qualifying course adoption) To view the errata please visit the authors personal webpage.
When on a summer evening, astrophysicist Hubert Reeves went for a walk with his granddaughter, he was immediately assaulted by her questions: 'How big is the Universe? How far are the stars? Are there other universes like ours?'. This little book is the result of their discussion - a very clear and fulfilling explanation on where we come from and our place in the Universe. Here is a perfect occasion for everybody, and not only children, to revise their conceptions about the cosmos.
On megaparsec scales, matter and galaxies have aggregated into a complex network of interconnected filaments, wall-like structures and compact clusters surrounded by large near-empty void regions. Dubbed the 'Cosmic Web', theoretical and observational studies have led to its recognition as a key aspect of structure in the Universe, representing a universal phase in the gravitationally driven emergence and evolution of cosmic structure. IAU Symposium 308 marked the centenary of the birth of the Russian physicist and cosmologist Yakov B. Zeldovich (1914-87), who was instrumental in the development of this view of structure formation. His seminal work paved the way towards an understanding of the complex web-like structure observed in our Universe. This volume synthesizes the insights obtained from many different observational and theoretical studies, and helps prepare researchers and students working in this vibrant field for the many upcoming surveys.
The essential introduction to modern string theory-now fully expanded and revised String Theory in a Nutshell is the definitive introduction to modern string theory. Written by one of the world's leading authorities on the subject, this concise and accessible book starts with basic definitions and guides readers from classic topics to the most exciting frontiers of research today. It covers perturbative string theory, the unity of string interactions, black holes and their microscopic entropy, the AdS/CFT correspondence and its applications, matrix model tools for string theory, and more. It also includes 600 exercises and serves as a self-contained guide to the literature. This fully updated edition features an entirely new chapter on flux compactifications in string theory, and the chapter on AdS/CFT has been substantially expanded by adding many applications to diverse topics. In addition, the discussion of conformal field theory has been extensively revised to make it more student-friendly. The essential one-volume reference for students and researchers in theoretical high-energy physics Now fully expanded and revised Provides expanded coverage of AdS/CFT and its applications, namely the holographic renormalization group, holographic theories for Yang-Mills and QCD, nonequilibrium thermal physics, finite density physics, and entanglement entropy Ideal for mathematicians and physicists specializing in theoretical cosmology, QCD, and novel approaches to condensed matter systems An online illustration package is available to professors
Not long ago, the Solar System was the only example of a planetary system - a star and the bodies orbiting it - that we knew. Now, we know thousands of planetary systems, and have even been able to observe planetary systems at the moment of their birth. This Very Short Introduction explores this new frontier, incorporating the latest research. The book takes the reader on a journey through the grand sweep of time, from the moment galaxies begin to form after the Big Bang to trillions of years in the future when the Universe will be a dilute soup of dim galaxies populated mostly by red dwarf stars. Throughout, Raymond T. Pierrehumbert introduces the latest insights gained from a new generation of telescopes that catch planetary systems at the moment of formation, and to the theoretical advances that attempt to make sense of these observations. He explains how the elements that make up life and the planets on which life can live are forged in the interiors of dying stars, and make their way into rocky planets. He also explores the vast array of newly discovered planets orbiting stars other than our own, and explains the factors that determine their climates. Finally, he reveals what determines how long planetary systems can live, and what happens in their end-times. Very Short Introductions: Brilliant, Sharp, Inspiring ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
What if life isn't just a part of the universe . . . what if it determines the very structure of the universe itself? The theory that blew your mind in Biocentrism and Beyond Biocentrism is back, with brand-new research revealing the startling truth about our existence. What is consciousness? Why are we here? Where did it all come from-the laws of nature, the stars, the universe? Humans have been asking these questions forever, but science hasn't succeeded in providing many answers-until now. In The Grand Biocentric Design, Robert Lanza, one of Time Magazine's "100 Most Influential People," is joined by theoretical physicist Matej Pavsic and astronomer Bob Berman to shed light on the big picture that has long eluded philosophers and scientists alike. This engaging, mind-stretching exposition of how the history of physics has led us to Biocentrism-the idea that life creates reality-takes readers on a step-by-step adventure into the great science breakthroughs of the past centuries, from Newton to the weirdness of quantum theory, culminating in recent revelations that will challenge everything you think you know about our role in the universe. This book offers the most complete explanation of the science behind Biocentrism to date, delving into the origins of the memorable principles introduced in previous books in this series, as well as introducing new principles that complete the theory. The authors dive deep into topics including consciousness, time, and the evidence that our observations-or even knowledge in our minds-can affect how physical objects behave. The Grand Biocentric Design is a one-of-a-kind, groundbreaking explanation of how the universe works, and an exploration of the science behind the astounding fact that time, space, and reality itself, all ultimately depend upon us.
Illustrated with breathtaking images of the Solar System and of the Universe around it, this book explores how the discoveries within the Solar System and of exoplanets far beyond it come together to help us understand the habitability of Earth, and how these findings guide the search for exoplanets that could support life. The author highlights how, within two decades of the discovery of the first planets outside the Solar System in the 1990s, scientists concluded that planets are so common that most stars are orbited by them. The lives of exoplanets and their stars, as of our Solar System and its Sun, are inextricably interwoven. Stars are the seeds around which planets form, and they provide light and warmth for as long as they shine. At the end of their lives, stars expel massive amounts of newly forged elements into deep space, and that ejected material is incorporated into subsequent generations of planets. How do we learn about these distant worlds? What does the exploration of other planets tell us about Earth? Can we find out what the distant future may have in store for us? What do we know about exoworlds and starbirth, and where do migrating hot Jupiters, polluted white dwarfs, and free-roaming nomad planets fit in? And what does all that have to do with the habitability of Earth, the possibility of finding extraterrestrial life, and the operation of the globe-spanning network of the sciences?
John Brockman brings together the world's best-known physicists and science writers--including Brian Greene, Walter Isaacson, Nobel Prize-winners Murray Gell-Mann and Frank Wilczek, and Brian Cox--to explain the universe in all wondrous splendor. In Universe, today's most influential science writers explain the science behind our evolving understanding of the universe and everything in it, including the cutting edge research and discoveries that are shaping our knowledge. Lee Smolin reveals how math and cosmology are helping us create a theory of the whole universe Brian Cox offers new dimensions on the Large Hadron and the existence of a Higgs-Boson particle Neil Turok analyzes the fundamental laws of nature, what came before the big bang, and the possibility of a unified theory. Seth Lloyd investigates the impact of computational revolutions and the informational revolution Lawrence Krauss provides fresh insight into gravity, dark matter, and the energy of empty space Brian Greene and Walter Isaacson illuminate the genius who revolutionized modern science: Albert Einstein and much more. Explore the Universe with some of today's greatest minds: what it is, how it came into being, and what may happen next.
Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory A new edition of the New York Times bestseller—now a three-part Nova special on PBS-TV coming in Fall 2003: a fascinating and thought-provoking journey through the mysteries of space, time, and matter.
This text gives an introduction to particle physics at a level accessible to advanced undergraduate students. It is based on lectures given to 4th year physics students over a number of years, and reflects the feedback from the students. The aim is to explain the theoretical and experimental basis of the Standard Model (SM) of Particle Physics with the simplest mathematical treatment possible. All the experimental discoveries that led to the understanding of the SM relied on particle detectors and most of them required advanced particle accelerators. A unique feature of this book is that it gives a serious introduction to the fundamental accelerator and detector physics, which is currently only available in advanced graduate textbooks. The mathematical tools that are required such as group theory are covered in one chapter. A modern treatment of the Dirac equation is given in which the free particle Dirac equation is seen as being equivalent to the Lorentz transformation. The idea of generating the SM interactions from fundamental gauge symmetries is explained. The core of the book covers the SM. The tools developed are used to explain its theoretical basis and a clear discussion is given of the critical experimental evidence which underpins it. A thorough account is given of quark flavour and neutrino oscillations based on published experimental results, including some from running experiments. A simple introduction to the Higgs sector of the SM is given. This explains the key idea of how spontaneous symmetry breaking can generate particle masses without violating the underlying gauge symmetry. A key feature of this book is that it gives an accessible explanation of the discovery of the Higgs boson, including the advanced statistical techniques required. The final chapter gives an introduction to LHC physics beyond the standard model and the techniques used in searches for new physics. There is an outline of the shortcomings of the SM and a discussion of possible solutions and future experiments to resolve these outstanding questions. For updates, new results, useful links as well as corrections to errata in this book, please see the book website maintained by the authors: https://pplhcera.physics.ox.ac.uk/
The first volume of "Cosmos," his five-volume survey of the universe, appeared in 1845, though Humboldt had labored on the entire work for nearly half a century. He scrupulously sent sections of the work to other experts for suggestions and corrections. The last volume, put together from his notes after his death, appeared in 1861. The volumes were translated almost as rapidly as they appeared. This paperback edition reprints the Harper & Brothers edition, published in New York in 1858-59. |
![]() ![]() You may like...
The Emergence Paradigm in Quality…
Teun Hardjono, Everard van Kemenade
Hardcover
R3,119
Discovery Miles 31 190
Solutions to Financial Economics…
Thorsten Hens, Marc Oliver Rieger
Hardcover
R1,654
Discovery Miles 16 540
Africa's Business Revolution - How to…
Acha Leke, Mutsa Chironga, …
Hardcover
![]()
|