![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time > Cosmology & the universe
Working physicists, and especially astrophysicists, value a good `back-of-the-envelope' calculation, meaning a short, elegant computation or argument that starts from general principles and leads to an interesting result. This book guides students on how to understand astrophysics using general principles and concise calculations - endeavouring to be elegant where possible and using short computer programs where necessary. The material proceeds in approximate historical order. The book begins with the Enlightenment-era insight that the orbits of the planets is easy, but the orbit of the Moon is a real headache, and continues to deterministic chaos. This is followed by a chapter on spacetime and black holes. Four chapters reveal how microphysics, especially quantum mechanics, allow us to understand how stars work. The last two chapters are about cosmology, bringing us to 21st-century developments on the microwave background and gravitational waves.
This book contains the proceedings of the first large IAU Symposium dedicated to the bulges of spiral galaxies. Detailed attention is paid to the bulge of the Milky Way, one of the major building blocks of this system. Topics include the definition of the bulge in our Galaxy and its relation to the so-called spheroid. Discussions are presented regarding the stars contained in this bulge, their astrophysical properties, their motions and the metallicity variations which appear to be present. The possible existence of a bar in the bulge and its origin and future are also examined. The same topics are discussed in less detail for the bulges of other galaxies.
This book offers a systematic exposition of conformal methods and how they can be used to study the global properties of solutions to the equations of Einstein's theory of gravity. It shows that combining these ideas with differential geometry can elucidate the existence and stability of the basic solutions of the theory. Introducing the differential geometric, spinorial and PDE background required to gain a deep understanding of conformal methods, this text provides an accessible account of key results in mathematical relativity over the last thirty years, including the stability of de Sitter and Minkowski spacetimes. For graduate students and researchers, this self-contained account includes useful visual models to help the reader grasp abstract concepts and a list of further reading, making this an ideal reference companion on the topic. This title, first published in 2016, has been reissued as an Open Access publication on Cambridge Core.
Discusses the wide range of chemistry in astronomical environments with an emphasis on the description of molecular processes that critically influence the nature and evolution of astronomical objects and the identification of specific observations that directly address significant astronomical questions. The subject areas of the symposium included atomic and molecular processes at low and high temperatures and photon interactions, the chemical structure of molecular clouds in the Milky Way and in external galaxies, the chemistry of outflows and their interactions with the interstellar medium, the chemical connections between the interstellar medium, and the solar system and pregalactic chemistry.
Aristotle believed that the outermost stars are carried round us on a transparent sphere. There are directions in the universe and a preferred direction of rotation. The sun moon and planets are carried on different revolving spheres. The spheres and celestial bodies are composed of an everlasting fifth element, which has none of the ordinary contrary properties like heat and cold which could destroy it, but only the facility for uniform rotation. But this creates problems as to how the heavenly bodies create light, and, in the case of the sun, heat. The topics covered in this part of Simplicius' commentary are the speeds and distances of the stars; that the stars are spherical; why the sun and moon have fewer motions than the other five planets; why the sphere of the fixed stars contains so many stars whereas the other heavenly spheres contain no more than one (Simplicius has a long excursus on planetary theory in his commentary on this chapter); discussion of people's views on the position, motion or rest, shape, and size of the earth; that the earth is a relatively small sphere at rest in the centre of the cosmos.
With stunning regularity, the search for our cosmic roots has been yielding remarkable new discoveries about the universe and our place in it. In his compelling book, Origins: The Quest for Our Cosmic Roots, veteran science journalist Tom Yulsman chronicles the latest discoveries and describes in clear and engaging terms what they mean. From the interior of protons to the outer reaches of the universe, and from the control room of one of the world's most powerful particle accelerators to an observatory atop the tallest mountain in the Pacific basin, Yulsman takes readers on a fantastic voyage at the cutting edge of science. How could the universe have sprouted from absolute nothingness? What is the origin of galaxies? How do stars and planets form? And despite what now seem to be incredible odds, how did Earth come to be a rich oasis of biodiversity-one that has given rise to a species intelligent enough to ask these questions? In laying out the answers, Origins addresses some of the most profound issues humans have ever confronted.
From a planet with a hexagonal storm to the home of the Solar System's largest volcano, our neighbouring bodies are unique and fascinating places. Where else would you find somewhere with days longer than its years? Humanity's understanding of planets has changed drastically since ancient times when early astronomers mistook the lights they saw in the sky for wandering stars. We've come a long way since then, but there's still so much we don't know. Could there be life on Mars? How many planets exist outside the Solar System? Is there another 'Earth' out there? And why can't we call Pluto a planet anymore? Discover more in this essential guide to planets in the Solar System and beyond by astronomer Dr Emily Drabek-Maunder of Royal Observatory Greenwich.
Applications of quantum field theoretical methods to gravitational physics, both in the semiclassical and the full quantum frameworks, require a careful formulation of the fundamental basis of quantum theory, with special attention to such important issues as renormalization, quantum theory of gauge theories, and especially effective action formalism. The first part of this graduate textbook provides both a conceptual and technical introduction to the theory of quantum fields. The presentation is consistent, starting from elements of group theory, classical fields, and moving on to the effective action formalism in general gauge theories. Compared to other existing books, the general formalism of renormalization in described in more detail, and special attention paid to gauge theories. This part can serve as a textbook for a one-semester introductory course in quantum field theory. In the second part, we discuss basic aspects of quantum field theory in curved space, and perturbative quantum gravity. More than half of Part II is written with a full exposition of details, and includes elaborated examples of simplest calculations. All chapters include exercises ranging from very simple ones to those requiring small original investigations. The selection of material of the second part is done using the "must-know" principle. This means we included detailed expositions of relatively simple techniques and calculations, expecting that the interested reader will be able to learn more advanced issues independently after working through the basic material, and completing the exercises.
Mappa mundi texts and images present a panorama of the medieval world-view, c.1300; the Hereford map studied in close detail. Filled with information and lore, mappae mundi present an encyclopaedic panorama of the conceptual "landscape" of the middle ages. Previously objects of study for cartographers and geographers, the value of medieval maps to scholars in other fields is now recognised and this book, written from an art historical perspective, illuminates the medieval view of the world represented in a group of maps of c.1300. Naomi Kline's detailed examination of the literary, visual, oral and textual evidence of the Hereford mappa mundi and others like it, such as the Psalter Maps, the '"Sawley Map", and the Ebstorf Map, places them within the larger context of medieval art and intellectual history. The mappa mundi in Hereford cathedral is at the heart of this study: it has more than one thousand texts and images of geographical subjects, monuments, animals, plants, peoples, biblical sites and incidents, legendary material, historical information and much more; distinctions between "real" and "fantastic" are fluid; time and space are telescoped, presenting past, present, and future. Naomi Kline provides, for the first time, a full and detailed analysis of the images and texts of the Hereford map which, thus deciphered, allow comparison with related mappae mundi as well as with other texts and images. NAOMI REED KLINE is Professor of Art History at Plymouth State College.
All humans share three origins: the beginning of our individual lives, the appearance of life on Earth, and the formation of our planetary home. Life through Time and Space brings together the latest discoveries in both biology and astronomy to examine our deepest questions about where we came from, where we are going, and whether we are alone in the cosmos. A distinctive voice in the growing field of astrobiology, Wallace Arthur combines embryological, evolutionary, and cosmological perspectives to tell the story of life on Earth and its potential to exist elsewhere in the universe. He guides us on a journey through the myriad events that started with the big bang and led to the universe we inhabit today. Along the way, readers learn about the evolution of life from a primordial soup of organic molecules to complex plants and animals, about Earth's geological transformation from barren rock to diverse ecosystems, and about human development from embryo to infant to adult. Arthur looks closely at the history of mass extinctions and the prospects for humanity's future on our precious planet. Do intelligent aliens exist on a distant planet in the Milky Way, sharing the three origins that characterize all life on Earth? In addressing this question, Life through Time and Space tackles the many riddles of our place and fate in the universe that have intrigued human beings since they first gazed in wonder at the nighttime sky.
'Everything you wanted to know about physics but were afraid to ask' Priyamvada Natarajan, author of Mapping the Heavens __________________________ When leading theoretical physicist Professor Michael Dine was asked where you could find an accessible book that would teach you about the Big Bang, Dark Matter, the Higgs boson and the cutting edge of physics now, he had nothing he could recommend. So he wrote it himself. In This Way to the Universe, Dine takes us on a fascinating tour through the history of modern physics - from Newtonian mechanics to quantum, from particle to nuclear physics - delving into the wonders of our universe at its largest, smallest, and within our daily lives. If you are looking for the one book to help you understand physics, written in language anyone can follow, this is it. __________________________ 'An extraordinary journey into what we know, what we hope to know, and what we don't know, about the universe and the laws that govern it' Leonard Susskind, author of The Theoretical Minimum series 'This book is a rare event . . . presented by someone who is a true master' Sean Carroll, author of From Eternity to Here 'Dine's enthusiastic storytelling makes the read worth it for those who want to finally wrap their mind around string theory or the Higgs boson' Tess Joosse, Scientific American
Yet over the past few decades, physicists have discovered a phenomenon that operates outside the confines of space and time: nonlocality - the ability of two particles to act in harmony no matter how far apart they may be. If space isn't what we thought it was, then what is it? In Spooky Action at a Distance, the award-winning journalist George Musser sets out to answer that question. He guides us on an epic journey into the lives of experimental physicists observing particles acting in tandem, astronomers finding galaxies that look statistically identical, and cosmologists hoping to unravel the paradoxes surrounding the big bang. He traces the contentious debates over nonlocality through major discoveries and disruptions of the twentieth century and shows how scientists faced with the same undisputed experimental evidence develop wildly different explanations for that evidence. Their conclusions challenge our understanding of the origins of the universe - and they suggest a new grand unified theory of physics.
'This is a nicely produced book which should appeal to a wide readership.'The ObservatoryThis book is about the Dark Energy Survey, a cosmological experiment designed to investigate the physical nature of dark energy by measuring its effect on the expansion history of the universe and on the growth of large-scale structure. The survey saw first light in 2012, after a decade of planning, and completed observations in 2019. The collaboration designed and built a 570-megapixel camera and installed it on the four-metre Blanco telescope at the Cerro Tololo Inter-American Observatory in the Chilean Andes. The survey data yielded a three-dimensional map of over 300 million galaxies and a catalogue of thousands of supernovae. Analysis of the early data has confirmed remarkably accurately the model of cold dark matter and a cosmological constant. The survey has also offered new insights into galaxies, supernovae, stellar evolution, solar system objects and the nature of gravitational wave events.A project of this scale required the long-term commitment of hundreds of scientists from institutions all over the world. The chapters in the first three sections of the book were either written by these scientists or based on interviews with them. These chapters explain, for a non-specialist reader, the science analysis involved. They also describe how the project was conceived, and chronicle some of the many and diverse challenges involved in advancing our understanding of the universe. The final section is trans-disciplinary, including inputs from a philosopher, an anthropologist, visual artists and a poet. Scientific collaborations are human endeavours and the book aims to convey a sense of the wider context within which science comes about.This book is addressed to scientists, decision makers, social scientists and engineers, as well as to anyone with an interest in contemporary cosmology and astrophysics.Related Link(s)
An astonishing exploration of planet formation and the origins of life by one of the world's most innovative planetary geologists. In 1959, the Soviet probe Luna 3 took the first photos of the far side of the moon. Even in their poor resolution, the images stunned scientists: the far side is an enormous mountainous expanse, not the vast lava-plains seen from Earth. Subsequent missions have confirmed this in much greater detail. How could this be, and what might it tell us about our own place in the universe? As it turns out, quite a lot. Fourteen billion years ago, the universe exploded into being, creating galaxies and stars. Planets formed out of the leftover dust and gas that coalesced into larger and larger bodies orbiting around each star. In a sort of heavenly survival of the fittest, planetary bodies smashed into each other until solar systems emerged. Curiously, instead of being relatively similar in terms of composition, the planets in our solar system, and the comets, asteroids, satellites and rings, are bewitchingly distinct. So, too, the halves of our moon. In When the Earth Had Two Moons, esteemed planetary geologist Erik Asphaug takes us on an exhilarating tour through the farthest reaches of time and our galaxy to find out why. Beautifully written and provocatively argued, When the Earth Had Two Moons is not only a mind-blowing astronomical tour but a profound inquiry into the nature of life here-and billions of miles from home.
Features: Authored by experienced lecturers in Particle Physics, Quantum Field Theory, Nuclear Physics, and General Relativity Provides an accessible introduction to Particle Physics and Cosmology
You've got questions: about space, time, gravity, and the odds of meeting your older self inside a wormhole. All the answers you need are right here. As a species, we may not agree on much, but one thing brings us all together: a need to know. We all wonder, and deep down we all have the same big questions. Why can't I travel back in time? Where did the universe come from? What's inside a black hole? Can I rearrange the particles in my cat and turn it into a dog? Physics professor Daniel Whiteson and researcher-turned-cartoonist Jorge Cham are experts at explaining science in ways we can all understand, in their books and on their popular podcast, Daniel and Jorge Explain the Universe. With their signature blend of humour and oh-now-I-get-it clarity, Jorge and Daniel offer short, accessible, and lighthearted answers to some of the most common, most outrageous, and most profound questions about the universe they've been asked. This witty, entertaining, and fully illustrated book is an essential troubleshooting guide for the perplexing aspects of reality, big and small, from the invisible particles that make up your body to the identical version of you currently reading this exact sentence in the corner of some other galaxy. If the universe came with an FAQ, this would be it.
The Cosmos Explained is an exciting and beautifully designed book that charts the life of our universe from the Big Bang to the present day and beyond. Starting with the moment of the Big Bang-at exactly one ten-millionth of a trillionth of a trillionth of a trillionth of a second-this book charts a history of space and time all the way through the evolution of our solar system, the birth of stars and the formation of life on Earth, to the future of our galaxy and beyond. With deeply insightful and fascinating text by Hayden Planetarium Associate Professor Charles Liu, who also hosts the immensely popular StarTalk podcast, this book is an accessible and enthralling gateway into the mysteries of space, time and the universe. Pinpoint exactly where you are in space and time using the timeline at the bottom of every page, and explore the history of the cosmos and the science behind it through beautiful telescope images and striking illustrations. Packaged in a unique retro design that reflects the 1960s cosmonaut era but still feels modern and relevant today, this title is as rich with information as it is with stunning visualisations of the concepts and bodies detailed within. An ideal gift for anyone interested in space or curious about the cosmos, The Cosmos Explained is a unique and entertaining timeline of life, the universe, and everything!
Space is far bigger than humanity can conceive. Although our ancestors visually examined the skies to make sense of the Universe, space exploration in its truest sense is just a moment in this historical timeline, yet it is how we've significantly improved our understanding of the cosmos. Space Exploration begins with the evolution of astronomy, including notable characters, scientific breakthroughs and pinnacle moments. It delves into the development of robotic spacecraft and what uncrewed and crewed missions above and beyond our planet have uncovered. It questions how this knowledge will aid us in our future space endeavours, and the myriad questions that remain unanswered.
Dust is widespread in the galaxy. To astronomers studying stars it
may be just an irritating fog, but it is becoming widely recognized
that cosmic dust plays an active role in astrochemistry. Without
dust, the galaxy would have evolved differently, and planetary
systems like ours would not have occurred.
This volume gathers the content of the courses held at the Third IDPASC School, which took place in San Martino Pinario, Hospederia and Seminario Maior, in the city of Santiago de Compostela, Galiza, Spain, from January 21st to February 2nd, 2013. This school is the annual joint program of the International Doctorate Network in Particle Physics, Astrophysics, and Cosmology (IDPASC). The purpose of the school series is to present doctoral students from different universities and laboratories in Europe and beyond with a broad range of the latest results and current state of the art in the fields of Particle Physics, Astrophysics, and Cosmology, and to further introduce them to both the questions now posed by the potentials of physics and to challenges connected with current and future experiments - in particular, with the newly available energy ranges. Following these guidelines, the content of this third edition of the IDPASC School was jointly planned by the Academic Council and by the network's International Committee, whose members ensure every year its timely formulation, keeping up with the constant evolution of these fields. The program covers a balanced range of the latest developments in these fields worldwide, with courses offered by internationally acknowledged physicists on the Basic Features of Hadronic Processes, Quantum Chromodynamics, Physics and Technology of ALICE, LHCb Physics-Parity Violation, the Higgs System in and beyond the Standard Model, Higgs Searches at the LHC, Theory and Experiments with Cosmic Rays, Numerical Methods and Data Analysis in Particle Physics, Theoretical Cosmology, and AdS/CFT Correspondence. Most of these courses were complemented by practical and discussion sessions.
A new look at the first few seconds after the Big Bang-and how research into these moments continues to revolutionize our understanding of our universe Scientists in the past few decades have made crucial discoveries about how our cosmos evolved over the past 13.8 billion years. But there remains a critical gap in our knowledge: we still know very little about what happened in the first seconds after the Big Bang. At the Edge of Time focuses on what we have recently learned and are still striving to understand about this most essential and mysterious period of time at the beginning of cosmic history. Delving into the remarkable science of cosmology, Dan Hooper describes many of the extraordinary and perplexing questions that scientists are asking about the origin and nature of our world. Hooper examines how we are using the Large Hadron Collider and other experiments to re-create the conditions of the Big Bang and test promising theories for how and why our universe came to contain so much matter and so little antimatter. We may be poised to finally discover how dark matter was formed during our universe's first moments, and, with new telescopes, we are also lifting the veil on the era of cosmic inflation, which led to the creation of our world as we know it. Wrestling with the mysteries surrounding the initial moments that followed the Big Bang, At the Edge of Time presents an accessible investigation of our universe and its origin.
'Great characters, fine writing, totally engrossing' STEPHEN KING It might have been the end of days. Instead it was the beginning of something shockingly new. They called the comet Cain, after the astronomer who discovered it. It passed 500,000 miles from Earth. We were spared planetary destruction and granted a light show like no other. But, one year later, Earth span into the debris field left by the comet and a meteor storm struck. Roads, buildings and even a small town were annihilated. The meteors impacted heavily around the dying mining town of Northfall, Minnesota. It was the night of a mysterious double murder, the deed overshadowed by the discovery that the burning remains of the rock contained an unknown substance more precious than gold: the Ninth Metal. And with that discovery, everything changed. Benjamin Percy is an award-winning novelist, celebrated comic books writer and author of the Wolverine podcast. The Ninth Metal is the first of a cycle of novels set in a shared universe. Praise for The Ninth Metal: 'Whether you choose to think of him as the Elmore Leonard of rural Minnesota or the Stephen King of Science Fiction, Percy - with his extraordinary and unrelenting eye - dishes up humanity like some kind of otherworldly blue plate special, at once deeply familiar and wildly new' Margaret Stohl, No. 1 New York Times Bestselling Author 'Take one part dystopia, one part sci-fi, two parts apocalypse, then ride them roughshod through a bleak and bloody western, and it still wouldn't get close to what Ben Percy does here, which is blow open the core of humanity's dark heart' Marlon James, Booker Prize winning author of Black Leopard, Red Wolf 'The Ninth Metal continues his streak of thrilling, incisive genre bending goodness. It's a sci-fi novel, a crime novel and a super-hero novel, too. Audacious and intelligent and exactly what I was dying to read' Victor LaValle, author of The Changeling
|
You may like...
A Brief History Of Time - From Big Bang…
Stephen Hawking
Paperback
(4)
|