![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time > Cosmology & the universe
The presentations at this NASA-hosted Symposium in honor of Mino Freund will touch upon the fields, to which his prolific mind has made significant contributions. These include low temperature physics, cosmology, and nanotechnology with its wide-ranging applicability to material science, neuroscience, Earth sciences and satellite technology. To learn more about Mino s career you can download the "Tribute" http: //multimedia.seti.org/mino/Tribute.pdf which outlines his journey from (i) low-temperature physics and superconductivity at the ETH Zurich to (ii) building one remarkable milliKelvin refrigerator for the US-Japan IRTS mission at UC Berkeley and ISAS in Japan to (iii) a decade in cosmology, to (iv) being on the micro-bolometer team at NASA Goddard for the HAWC instrument on SOFIA, to (v) developing at AFRL the nanotechnology portfolio for the entire Air Force. This was followed by six years at the NASA Ames Research Center, where Mino formulated his far-ahead ideas about swarms of capable nanosats circling the Earth, which have since started to become a reality. He engaged in a broad range of nanotechnology projects, including novel applications in neuroscience well before he himself was struck by the deadly brain tumor."
This book presents a vivid argument for the almost lost idea of a
unity of all natural sciences. It starts with the "strange" physics
of matter, including particle physics, atomic physics and quantum
mechanics, cosmology, relativity and their consequences (Chapter
I), and it continues by describing the properties of material
systems that are best understood by statistical and phase-space
concepts (Chapter II). These lead to entropy and to the classical
picture of quantitative information, initially devoid of value and
meaning (Chapter III). Finally, "information space" and dynamics
within it are introduced as a basis for semantics (Chapter IV),
leading to an exploration of life and thought as new problems in
physics (Chapter V).
The now recognized extensive existence of life on earth very shortly after the destructive bombardment of the earth's surface by early solar system debris has stimulated inquiry into possible exogenous sources of prebiotic molecules from space as well as intensified studies of the early earth's atmosphere. The chapters in this book cover the possible sources of prebiotic molecules and avenues by which life could have evolved, starting from the birth and evolution of the solar system. The relevance of the classic experiments by Stanley Miller on the formation of life's building blocks on an early earth is reexamined. The role of chemistry in space is covered by chapters on interstellar dust, and meteorites to which experimental as well as theoretical investigations have been directed. In various chapters the existence of amino acids as well as other prebiotic molecules in meteorites is clearly established and inferred for interstellar dust and comets. Theories of molecular synthesis in the solar nebula are considered. Extensive coverage is given to the physical conditions and to prebiotic systems on the early earth. Possible pathways to life on an early Mars and the possible messages to be obtained by space exploration are discussed. Questions of effects of clays and of chirality on early chemical evolution are discussed. Recent ideas on the RNA world as the precursor to life are reviewed. The open-endedness of the study of life's origins and the need to investigate whether the prebiotic building blocks formed in outer space or on the earth is emphasized. A good deal of the book is suitable to graduate students.
The Physics of the Early Universe is an edited and expanded version of the lectures given at a recent summer school of the same name. Its aim is to present an advanced multi-authored textbook that meets the needs of both postgraduate students and young researchers interested in, or already working on, problems in cosmology and general relativity, with emphasis on the early universe. A particularly strong feature of the present work is the constructive-critical approach to the present mainstream theories, the careful assessment of some alternative approaches, and the overall balance between theoretical and observational considerations. As such, this book will also benefit experienced scientists and nonspecialists from related areas of research.
A pocket-style edition based on the New York Times bestseller A Brief Welcome to the Universe offers a breathtaking tour of the cosmos, from planets, stars, and galaxies to black holes and time loops. Bestselling authors and acclaimed astrophysicists Neil deGrasse Tyson, Michael A. Strauss, and J. Richard Gott take readers on an unforgettable journey of exploration to reveal how our universe actually works. Propelling you from our home solar system to the outermost frontiers of space, this book builds your cosmic insight and perspective through a marvelously entertaining narrative. How do stars live and die? What are the prospects of intelligent life elsewhere in the universe? How did the universe begin? Why is it expanding and accelerating? Is our universe alone or part of an infinite multiverse? Exploring these and many other questions, this pocket-friendly book is your passport into the wonders of our evolving cosmos.
Astrobiology not only investigates how early life took hold of our planet but also life on other planets - both in our Solar System and beyond - and their potential for habitability. The book take readers from the scars on planetary surfaces made by space rocks to the history of the Solar System narrated by those space rocks as well as exoplanets in other planetary systems. But the true question is how life arose here or elsewhere. Modern comparative genomics has revealed that Darwin was correct; a set of highly conserved genes and cellular functions indicate that all life is related by common ancestry. The Last Universal Common Ancestor or LUCA sits at the base of the Tree of Life. However, once that life took hold, it started to diversify and form complex microbial communities that are known as microbial mats and stromatolites. Due to their long evolutionary history and abundance on modern Earth, research on the biological, chemical and geological processes of stromatolite formation has provided important insights into the field of astrobiology. Many of these microbialite-containing ecosystems have been used as models for astrobiology, and NASA mission analogs including Shark Bay, Pavilion and Kelly Lakes. Modern microbialites represent natural laboratories to study primordial ecosystems and provide proxies for how life could evolve on other planets. However, few viral metagenomic studies (i.e., viromes) have been conducted in microbialites, which are not only an important part of the community but also mirror its biodiversity. This book focuses on particularly interesting sites such as Andean lake microbialites, a proxy of early life since they are characterized by very high UV light, while Alchichica and Bacalar lakes are characterized by high-salt and oligotrophic waters that nurture stromatolites. However, it is only the oasis of Cuatro Cienegas Basin in Mexico that stored past life in its marine sediments of the Sierra de San Marcos. This particular Sierra has a magmatic pouch that moves the deep aquifer to the surface in a cycle of sun drenched life and back to the depths of the magmatic life in an ancient cycle that now is broken by the overexploitation of the surface water as well as the deep aquifer in order to irrigate alfalfa in the desert. The anthropocene, the era of human folly, is killing this unique time machine and with it the memory of the planet.
Expert science writer Giles Sparrow guides you through 21 stars you can see in the night sky and what they can teach us about our universe. On a clear evening, if you look up you can see thousands of stars shining in the dark sky, each with a story of their own. Taking 21 stars (and three imposters, that cheekily aren't technically stars), expert science writer Giles Sparrow offers a complete introduction to what is happening up in the night sky. Sparrow draws 'star maps' to help you easily identify the celestial bodies and then explains (for anyone not an astronomer themselves) what this particular pinprick of light can tell us about the birth, life and death of our universe. From red giants, quasars and supernovae to black holes, multiple stars and even our own Sun, this fascinating book tells the intriguing, inspiring and sometimes incredible story of how we came to unravel the mysteries of the cosmos, and what we learnt along the way. So look up at the sky and marvel at its wonders with this exciting new book.
This book discusses cosmology from both an observational and a strong theoretical perspective. The first part focuses on gravitation, notably the expansion of the universe and determination of cosmological parameters, before moving onto the main emphasis of the book, the physics of the early universe, and the connections between cosmological models and particle physics. The book provides links with particle physics and with investigations of the theories beyond the Standard Model, especially in connection to dark matter and matter-antimatter asymmetry puzzles. Readers will gain a comprehensive account of cosmology and the latest observational results, without requiring prior knowledge of relativistic theories, making the text ideal for students. Features: Provides a self-contained discussion of modern cosmology results without requiring any prior knowledge of relativistic theories, enabling students to learn the first rudiments needed for a rigorous comprehension of cosmological concepts Contains a timely discussion of the latest cosmological results, including those from WMAP and the Planck satellite, and discuss the cosmological applications of the Nobel Prize 2017 awarded discovery of gravitational waves by the LIGO interferometer and the very high energy neutrinos discovered by the IceCube detector Includes original figures complementing mathematical derivations and accounting for the most important cosmological observations, in addition to a wide variety of problems with a full set of solutions discussed in detail in an accompanying solutions manual (available upon qualifying course adoption) To view the errata please visit the authors personal href=":http//www.southampton.ac.uk/~pdb1d08">webpage.
A spectacular musical and scientific journey from the Bronx to the cosmic horizon that reveals the astonishing links between jazz, science, Einstein, and Coltrane More than fifty years ago, John Coltrane drew the twelve musical notes in a circle and connected them by straight lines, forming a five-pointed star. Inspired by Einstein, Coltrane put physics and geometry at the core of his music. Physicist and jazz musician Stephon Alexander follows suit, using jazz to answer physics' most vexing questions about the past and future of the universe. Following the great minds that first drew the links between music and physics-a list including Pythagoras, Kepler, Newton, Einstein, and Rakim -- The Jazz of Physics reveals that the ancient poetic idea of the "Music of the Spheres," taken seriously, clarifies confounding issues in physics. The Jazz of Physics will fascinate and inspire anyone interested in the mysteries of our universe, music, and life itself.
This book provides a first-hand account of modern cosmology, written by three celebrated astronomers renowned for their excellence in both research and teaching. The central theme of the book, the deep Universe, is approached in three truly complementary ways: as a coherent and smooth theory embracing the evolution of the Universe from its original radiations emerging from the hot Big Bang to the present structures of matter; as a meandering, rough road paved by our observations of stars, galaxies, and clusters; and in terms of how these approaches have been gradually developed and intertwined in the historical process that led to the modern science of cosmology.
Take your seats for the greatest tour ever - one that encompasses the whole of the Universe. En route, we stop off to gaze at 100 amazing sights - from asteroids to zodiacal dust and from orbit around the Earth to beyond the most distant galaxies. We start right here on Earth, and your tour guides are cosmic voyagers Patrick Moore, Brian May and Chris Lintott: Patrick is a lifelong lunar specialist; Brian is the leading authority on dust in our solar system, and Chris researches the formation of stars and galaxies.
The last decade of this century has seen a renewed interest in the dynamics and physics of the small bodies of the Solar System, Asteroids, Comets and Meteors. New observational evidences such as the discovery of the Edgeworth-Kuiper belt, refined numerical tools such as the symplectic integrators, analytical tools such as semi-numerical perturbation algorithms and in general a better understanding of the dynamics of Hamiltonian systems, all these factors have converged to make possible and worthwhile the study, over very long time spans, of these "minor" objects. Also the public, the media and even some political assell}blies have become aware that these "minor" objects of our planetary environnement could become deadly weapons. Apparently they did have a role in Earth history and a role more ominous than "predicting" defeat (or victory, why not?) to batches of credulous rulers. Remembering what may have happened to the dinosaurs but keeping all the discretion necessary to avoid creating irrational scares, it may not be unwise or irrelevant to improve our knowledge of the physics and dynamics of these objects and to study in particular their interactions with our planet.
Einstein's general theory of relativity is introduced in this
advanced undergraduate and beginning graduate level textbook.
Topics include special relativity, in the formalism of Minkowski's
four-dimensional space-time, the principle of equivalence,
Riemannian geometry and tensor analysis, Einstein field equation,
as well as many modern cosmological subjects, from primordial
inflation and cosmic microwave anisotropy to the dark energy that
propels an accelerating universe.
The observation, in 1919 by A.S. Eddington and collaborators, of the gra- tational de?ection of light by the Sun proved one of the many predictions of Einstein's Theory of General Relativity: The Sun was the ?rst example of a gravitational lens. In 1936, Albert Einstein published an article in which he suggested - ing stars as gravitational lenses. A year later, Fritz Zwicky pointed out that galaxies would act as lenses much more likely than stars, and also gave a list of possible applications, as a means to determine the dark matter content of galaxies and clusters of galaxies. It was only in 1979 that the ?rst example of an extragalactic gravitational lens was provided by the observation of the distant quasar QSO 0957+0561, by D. Walsh, R.F. Carswell, and R.J. Weymann. A few years later, the ?rst lens showing images in the form of arcs was detected. The theory, observations, and applications of gravitational lensing cons- tute one of the most rapidly growing branches of astrophysics. The gravi- tional de?ection of light generated by mass concentrations along a light path producesmagni?cation,multiplicity,anddistortionofimages,anddelaysp- ton propagation from one line of sight relative to another. The huge amount of scienti?c work produced over the last decade on gravitational lensing has clearly revealed its already substantial and wide impact, and its potential for future astrophysical applications.
The modern Persian word for cosmology is "Keyhan-shenakht," which is also the title of a Persian book written more than 800 years ago. The same term can also be found in Old Persian. In spite of this old tradition, modern cosmology is a new omer within the scientific disciplines in Iran. The cosmology community' is small and not yet well established. Given the spectacular recent advances in observational and theoretical cosmology, the large amount of new observational data which will become available in the near future, and the rapid expansion of the international cosmology community, it was realized that Iran should play a more active role in the exciting human endeavour which cosmology constitutes. This was the main motivation to establish a School on Cosmology in Iran. The plan is to hold a cosmology school every three years somewhere in Iran. The focus of this First School on Cosmology was chosen to be structure formation, a rapidly evolving cornerstone of modern cosmology. The topics of the school were selected in order to give both a broad overview of the current status of cosmological structure formation, and an in-depth dis cussion of the key issues theory of cosmological perturbations and analysis of cosmic microwave anisotropies. The lectures by Blanchard and Sarkar give an overview of homogeneous cosmological models and standard big bang cosmology. In his contribution, Padmanabhan presents a comprehen sive discussion of the growth of cosmological perturbations."
The book begins with a brief review of supersymmetry, and the construction of the minimal supersymmetric standard model and approaches to supersymmetry breaking. General non-perturbative methods are also reviewed leading to the development of holomorphy and the Affleck-Dine-Seiberg superpotential as powerful tools for analysing supersymmetric theories. Seiberg duality is discussed in detail, with many example applications provided, with special attention paid to its use in understanding dynamical supersysmmetry breaking. The Seiberg-Witten theory of monopoles is introduced through the analysis of simpler N=1 analogues. Superconformal field theories are described along with the most recent development known as "amaximization". Supergravity theories are examined in 4, 10, and 11 dimensions, allowing for a discussion of anomaly and gaugino mediation, and setting the stage for the anti- de Sitter/conformal field theory correspondence. This book is unique in containing an overview of the important developments in supersymmetry since the publication of "Suppersymmetry and Supergravity" by Wess and Bagger. It also strives to cover topics that are of interest to both formal and phenomenological theorists.
Progress in modern radio astronomy led to the discovery of space masers in the microwave range, and it became a powerful tool for studies of interstellar star-forming molecular clouds. Progress in observational astronomy, particularly with ground-based huge telescopes and the space-based Hubble Space Telescope, has led to recent discoveries of space lasers in the optical range. These operate in gas condensations in the vicinity of the mysterious star Eta Carinae (one of the most luminous and massive stars of our Galaxy). Both maser and laser effects, first demonstrated under laboratory conditions, have now been discovered to occur under natural conditions in space, too. This book describes consistently the elements of laser science, astrophysical plasmas, modern astronomical observation techniques, and the fundamentals and properties of astrophysical lasers. A book with such an interdisciplinary scope has not been available to date. The book will also be useful for a wider audience interested in modern developments of the natural sciences and technology.
The aim of this book is to give graduate students an overview of quantum gravity but it also covers related topics from astrophysics. Some well-written contributions can serve as an introduction into basic conceptual concepts like time in quantum gravity or the emergence of a classical world from quantum cosmology. This makes the volume attractive to philosophers of science, too. Other topics are black holes, gravitational waves and non-commutative extensions of physical theories.
The book is based on the author's PhD thesis, which deals with the concept of time in quantum gravity and its relevance for the physics of the early Universe. It presents a consistent and complete new relational formulation of quantum gravity (more specifically, of quantum mechanics models with diffeomorphism invariance), which is applied to potentially observable cosmological effects. The work provides answers to the following questions: How can the dynamics of quantum states of matter and geometry be defined in a diffeomorphism-invariant way? What is the relevant space of physical states and which operators act on it? How are the quantum states related to probabilities in the absence of a preferred time? The answers can provide a further part of the route to constructing a fundamental theory of quantum gravity. The book is well-suited to graduate students as well as professional researchers in the fields of general relativity and gravitation, cosmology, and quantum foundations.
Everything you ever wanted to know about the universe - and our place within it - in one mind-expanding and highly accessible book. ___ What happens inside black holes? Is dark matter real? Could we do anything to prevent being wiped out by an approaching asteroid? Will our explorations of our neighbouring planets reveal life or a new place to settle? What can observations of stars reveal about our origins - and our future? Professor Andrew Newsam draws on his vast expertise to show us what's going on beyond the limits of our planet, from our solar system to distant galaxies - and what this tells us about our own place in this vast expanse called 'the Universe'. From glowing nebulae to the sweeping majesty of the Milky Way, Everything You Ever Wanted to Know About the Universe will spark your curiosity and help you make sense of the amazing discoveries and fascinating mysteries of the cosmos. 'Unpatronizing, direct and comprehensible.' BBC Sky at Night Magazine
This book is a historical account of how natural philosophers and scientists have endeavoured to understand the universe at large, first in a mythical and later in a scientific context. Starting with the creation stories of ancient Egypt and Mesopotamia, the book covers all the major events in theoretical and observational cosmology, from Aristotle's cosmos over the Copernican revolution to the discovery of the accelerating universe in the late 1990s. It presents cosmology as a subject including scientific as well as non-scientific dimensions, and tells the story of how it developed into a true science of the heavens. Contrary to most other books in the history of cosmology, it offers an integrated account of the development with emphasis on the modern Einsteinian and post-Einsteinian period. Starting in the pre-literary era, it carries the story onwards to the early years of the 21st century. |
You may like...
Linear Systems, Signal Processing and…
Daniel Alpay, Mihaela B. Vajiac
Hardcover
R4,274
Discovery Miles 42 740
Spectral Methods in Surface…
Soren Fournais, Bernard Helffer
Hardcover
R1,590
Discovery Miles 15 900
Analysis of Pseudo-Differential…
Shahla Molahajloo, M.W. Wong
Hardcover
Analytic Methods in Interdisciplinary…
Vladimir V. Mityushev, Michael Ruzhansky
Hardcover
R3,285
Discovery Miles 32 850
Time-Frequency Analysis of Operators
Elena Cordero, Luigi Rodino
Hardcover
R4,548
Discovery Miles 45 480
Differential Equations with…
Warren Wright, Dennis Zill
Paperback
(1)
Hausdorff Calculus - Applications to…
Yingjie Liang, Wen Chen, …
Hardcover
R4,318
Discovery Miles 43 180
|