![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time > Cosmology & the universe
Our Universe is amazing. This is its story, told in simple language. The story tells how the Universe came to be what it is today. It starts with the Big Bang and describes how stars, black holes, and our solar system developed. It explores the evolution of life on Earth and investigates the possibility of extra-terrestrial life. It peers into the future and wonders about the Universe's likely old age and death, or whatever else may be its end. The challenge the book takes up is to explain all of this, including some of the astonishing concepts we have in science, such as Einstein's theories of Relativity and Quantum Mechanics, using virtually no mathematics and without dumbing-down. All are described narratively and explained using examples and anecdotes. The book is written for young people with a thirst for learning about the science of space, as well as for 'grown-ups' who want a better understanding of this fascinating subject.
Many of the earliest books, particularly those dating back to the 1900s and before, are now extremely scarce and increasingly expensive. We are republishing these classic works in affordable, high quality, modern editions, using the original text and artwork.
Prior to the 1920s it was generally thought, with a few exceptions, that our galaxy, the Milky Way, was the entire universe. Based on the work of Henrietta Leavitt with Cepheid variables, astronomer Edwin Hubble was able to determine that others had to lie outside our own. This books looks at 60 of those that possess some unusual qualities that make them of particular interest, from supermassive black holes and colliding galaxies to powerful radio sources.
Roger Penrose, one of the most accomplished scientists of our time, presents the only comprehensive and comprehensible account of the physics of the universe. From the very first attempts by the Greeks to grapple with the complexities of our known world to the latest application of infinity in physics, "The Road to Reality" carefully explores the movement of the smallest atomic particles and reaches into the vastness of intergalactic space. Here, Penrose examines the mathematical foundations of the physical universe, exposing the underlying beauty of physics and giving us one the most important works in modern science writing.
Many of the seven billion people who live on the earth look to either science or religion as the ultimate source of authority in their lives. But why must there be a conflict between the two? Why can't science and religion support each other? "The Unity of Truth" shows why and how it makes perfect sense for science and religion to be mutually supportive. Beginning with the accepted truths of modern science and the beliefs of traditional Christianity, authors Allen A. Sweet, C. Frances Sweet, and Fritz Jaensch use their diverse expertise to deliver a deeper level of understanding of the ways in which science and religion can coexist. Relying on a thorough knowledge of physics, theology, and mathematics, this study addresses the paradox of how God communicates with our material world without violating any of the laws of science. Individual chapters discuss some of the most popular quandaries associated with combining science and religion. In addition, it considers the beginning and end of our universe, the evolution of life, and the meaning of human emotions from the scientific and theological perspectives, thus pushing understanding to a higher plateau of wisdom. Rational and devoid of rhetoric, "The Unity of Truth" seeks to help resolve the ongoing battle between religion and science, delivering a thoughtful narrative designed to open minds and hearts.
This book describes how and why the early modern period witnessed the marginalisation of astrology in Western natural philosophy, and the re-adoption of the cosmological view of the existence of a plurality of worlds in the universe, allowing the possibility of extraterrestrial life. Founded in the mid-1990s, the discipline of astrobiology combines the search for extraterrestrial life with the study of terrestrial biology - especially its origins, its evolution and its presence in extreme environments. This book offers a history of astrobiology's attempts to understand the nature of life in a larger cosmological context. Specifically, it describes the shift of early modern cosmology from a paradigm of celestial influence to one of celestial inhabitation. Although these trends are regarded as consequences of Copernican cosmology, and hallmarks of a modern world view, they are usually addressed separately in the historical literature. Unlike others, this book takes a broad approach that examines the relationship of the two. From Influence to Inhabitation will benefit both historians of astrology and historians of the extraterrestrial life debate, an audience which includes researchers and advanced students studying the history and philosophy of astrobiology. It will also appeal to historians of natural philosophy, science, astronomy and theology in the early modern period.
The authors of this volume have been intimately connected with the conception of Big Bang model since 1947. They present a picture of what is now believed to be state-of-the-art knowledge about the evolution of the expanding universe and delineate the story of the development of the Big Bang model as they have seen and lived it from their own unique vantage point.
This monograph traces the development of our understanding of how and where energetic particles are accelerated in the heliosphere and how they may reach the Earth. Detailed data sets are presented which address these topics. The bulk of the observations are from spacecraft in or near the ecliptic plane. It is timely to present this subject now that Voyager-1 has entered the true interstellar medium. Since it seems unlikely that there will be a follow-on to the Voyager programme any time soon, the data we already have regarding the outer heliosphere are not going to be enhanced for at least 40 years.
New York Times bestseller Journey into the universe through the most spectacular sights in astronomy in stereoscopic 3D Welcome to the Universe in 3D takes you on a grand tour of the observable universe, guiding you through the most spectacular sights in the cosmos-in breathtaking 3D. Presenting a rich array of stereoscopic color images, which can be viewed in 3D using a special stereo viewer that folds easily out of the cover of the book, this book reveals your cosmic environment as you have never seen it before. Astronomy is the story of how humankind's perception of the two-dimensional dome of the sky evolved into a far deeper comprehension of an expanding three-dimensional cosmos. This book invites you to take part in this story by exploring the universe in depth, as revealed by cutting-edge astronomical research and observations. You will journey from the Moon through the solar system, out to exoplanets, distant nebulas, and galaxy clusters, until you finally reach the cosmic microwave background radiation (or CMB), the most distant light we can observe. The distances to these celestial wonders range from 1.3 light-seconds to 13.8 billion light-years. Along the way, the authors explain the fascinating features of what you are seeing, including how the 3D images were made using the same technique that early astronomers devised to measure distances to objects in space. The dramatic 3D images in this one-of-a-kind book will astonish you, extending your vision out to the farthest reaches of the universe. You will never look up into the night sky the same way again.
This book deals with a topic that has been largely neglected by philosophers of science to date: the ability to refer and analyze in tandem. On the basis of a set of philosophical case studies involving both problems in number theory and issues concerning time and cosmology from the era of Galileo, Newton and Leibniz up through the present day, the author argues that scientific knowledge is a combination of accurate reference and analytical interpretation. In order to think well, we must be able to refer successfully, so that we can show publicly and clearly what we are talking about. And we must be able to analyze well, that is, to discover productive and explanatory conditions of intelligibility for the things we are thinking about. The book's central claim is that the kinds of representations that make successful reference possible and those that make successful analysis possible are not the same, so that significant scientific and mathematical work typically proceeds by means of a heterogeneous discourse that juxtaposes and often superimposes a variety of kinds of representation, including formal and natural languages as well as more iconic modes. It demonstrates the virtues and necessity of heterogeneity in historically central reasoning, thus filling an important gap in the literature and fostering a new, timely discussion on the epistemology of science and mathematics.
Published over a period of 20 years the essays collected together in this volume all relate to the lasting human preoccupation with cosmological matters and modern responses to them. The eclecticism of the typical medieval scholar might now seem astonishing, regrettable, amusing, or derisory, according to one's view of how rigid intellectual barriers should be. In Stars, Fate & Mind North argues that we will seriously misunderstand ancient and medieval thought if we are not prepared to share a willingness to look across such frontiers as those dividing astrology from ecclesiastical history, biblical chronology from astronomy, and angelic hierarchies from the planetary spheres, theology from the theory of the continuum, celestial laws from terrestrial, or the work of the clockmaker from the work of God himself, namely the universe. Surveying the work of such controversial scholars as Alexander Thom and Immanuel Velikovsky this varied volume brings together current scholarship on cosmology, and as the title suggest considers the confluence of matters of the stars, fate and the mind. The collection is accompanied by further commentary from the author and new illustrations.
This new text looks at Quantum Chromodynamics, the theory of the strong force between quarks, which form the fundamental building blocks of nuclear matter. With a primary focus on experiments, the authors also include an extensive theoretical introduction to the field, as well as many exercises with solutions explained in detail.
First Snow White encounters one of the Little People, then one of the Even Smaller People, and finally one of the Truly Infinitesimal People. And no matter how diligently she searches, the only dwarves she can find are collapsed stars! Clearly, she's not at home in her well-known Brothers Grimm fairy tale, but instead in a strange new landscape that features quantum behavior, the wavelike properties of particles, and the Uncertainty Principle. She (and we) must have entered, in short, one of the worlds created by Robert Gilmore, physicist and fabulist.
Right now, you are orbiting a black hole. The Earth orbits the Sun, and the Sun orbits the centre of the Milky Way: a supermassive black hole, the strangest and most misunderstood phenomenon in the galaxy. In A Brief History of Black Holes, the award-winning University of Oxford researcher Dr Becky Smethurst charts five hundred years of scientific breakthroughs in astronomy and astrophysics. She takes us from the earliest observations of the universe and the collapse of massive stars, to the iconic first photographs of a black hole and her own published findings. A cosmic tale of discovery, Becky explains why black holes aren't really 'black', that you never ever want to be 'spaghettified', how black holes are more like sofa cushions than hoovers and why, beyond the event horizon, the future is a direction in space rather than in time. Told with humour and wisdom, this captivating book describes the secrets behind the most profound questions about our universe, all hidden inside black holes. 'A jaunt through space history . . . with charming wit and many pop-culture references' - BBC Sky At Night Magazine
Origins of Life: A Cosmic Perspective presents an overview of the concepts, methods, and theories of astrobiology and origins of life research while presenting a summary of the latest findings. The book provides insight into the environments and processes that gave birth to life on our planet, which naturally informs our assessment of the probability that has arisen (or will arise) elsewhere. In addition, the book encourages readers to go beyond basic concepts, to explore topics in greater depth, and to engage in lively discussions. The text is intended to be suitable for mid- and upper-level undergraduates and beginning graduate students and more generally as an introduction and overview for researchers and general readers seeking to follow current developments in this interdisciplinary field. Readers are assumed to have a basic grounding in the relevant sciences, but prior specialized knowledge is not required. Each chapter concludes with a list of questions and discussion topics as well as suggestions for further reading. Some questions can be answered with reference to material in the text, but others require further reading and some have no known answers. The intention is to encourage readers to go beyond basic concepts, to explore topics in greater depth, and, in a classroom setting, to engage in lively discussions with class members.
Nominated as an outstanding thesis by Professor Robert Crittenden of the Institute of Cosmology and Gravitation in Portsmouth, and winner of the Michael Penston Prize for 2014 given by the Royal Astronomical Society for the best doctoral thesis in Astronomy or Astrophysics, this work aims to shed light on one of the most important probes of the early Universe: the bispectrum of the cosmic microwave background. The CMB bispectrum is a potential window on exciting new physics, as it is sensitive to the non-Gaussian features in the primordial fluctuations, the same fluctuations that evolved into today's planets, stars and galaxies. However, this invaluable information is potentially screened, as not all of the observed non-Gaussianity is of primordial origin. Indeed, a bispectrum arises even for perfectly Gaussian initial conditions due to non-linear dynamics, such as CMB photons scattering off free electrons and propagating in an inhomogeneous Universe. Dr. Pettinari introduces the reader to this intrinsic bispectrum in a pedagogic way, building up from the standard model of cosmology and from cosmological perturbation theory, the tool cosmologists use to unravel the history of the cosmos. In doing so, he introduces SONG, a new and efficient code for solving the second-order Einstein and Boltzmann equations. Next, he moves on to answer the crucial question: is the intrinsic bispectrum going to screen the primordial signal in the CMB? Using SONG, he computes the intrinsic bispectrum and shows how its contamination leads to a small bias in the estimates of primordial non-Gaussianity, a great news for the prospect of using CMB data to probe primordial non-Gaussianity.
The main focus of this book is on the interconnection of two unorthodox scientific ideas, the varying-gravity hypothesis and the expanding-earth hypothesis. As such, it provides a fascinating insight into a nearly forgotten chapter in both the history of cosmology and the history of the earth sciences. The hypothesis that the force of gravity decreases over cosmic time was first proposed by Paul Dirac in 1937. In this book the author examines in detail the historical development of Dirac's hypothesis and its consequences for the structure and history of the earth, the most important of which was that the earth must have been smaller in the past.
|
You may like...
Infinite Dimensional Lie Groups In…
Augustin Banyaga, Joshua A. Leslie, …
Hardcover
R2,528
Discovery Miles 25 280
Algorithmic Problems in Groups and…
Jean-Camille Birget, Stuart Margolis, …
Hardcover
R2,822
Discovery Miles 28 220
Computational Commutative Algebra 1
Martin Kreuzer, Lorenzo Robbiano
Hardcover
R1,449
Discovery Miles 14 490
|