![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time > Cosmology & the universe
This is a review of the basic elements directly connected to the evolution of galaxies. Owing to advances in observational astronomy and astrophysics, data has become available about remote galaxies, which are consequently in the first stages of their evolution. It is therefore essential to link these data to the observation of very old populations in our own Galaxy, which are the remnants of the populations which existed in the first stages of galactic evolution. In this meeting, the relationship between these two different points of view is emphasized in the texts presented by well-known specialists as well as by young researchers active in the field. The difficulties of the problem and the remaining uncertainties are discussed.
The popularity of Stephen Hawking's work has put cosmology back in the public eye. The question of how the universe began, and why it hangs together, still puzzles scientists. Their puzzlement began two and a half thousand years ago when Greek philosophers first "looked up at the sky and formed a theory of everything". Though their solutions are little credited today, the questions remain fresh. The early Greek thinkers struggled to come to terms with and explain the totality of their surroundings, to identitify an original substance from which the universe was compounded, and to reconcile the presence of balance and proportion with the apparent disorder of the universe. M.R. Wright examines the cosmological theories of the "natural philosophers" from Thales, Anaximander and Anaximenes to Plato, the Stoics and the neo-Platonists. The importance of Babylonian and Egyptian forerunners is emphasized. This is an introduction to the cosmological thought of antiquity.
The 157th IAU Symposium "The Cosmic Dynamo" was entirely dedicated to dynamo processes, which are fundamental to all cosmic scales. Dynamo theory concerns one of the few truly key questions of recent cosmic physics. A complicated interplay of rotation, magnetism and turbulence determines stellar and galactic activity for almost all the short and medium time scales. Behind these multiform phenomena, the cosmic dynamo works in various guises, all involving inductive and dissipative equilibria in rotating turbulent cosmic plasmas. This book presents an up-to-date survey on investigations and results of dynamo theory and related observations. It is intended for graduate scientists working in the field of cosmical magnetism and its related problems, especially convection, turbulence and, more generally, nonlinear physics.
This book offers an original hypothesis capable of unifying evolution in the physical universe with evolution in biology; herewith it lays the conceptual foundations of "transdisciplinary unified theory". The rationale for the hypothesis is presented first; then the theoretical framework is outlined, and thereafter it is explored in regard to quantum physics, physical cosmology, micro- and macro-biology, and the cognitive sciences (neurophysiology, psychology, with attention to anomalous phenomena as well). The book closes with a variety of studies, both by the author and his collaborators, sketching out the implications of the hypothesis in regard to brain dynamics, cosmology, the concept of space, phenomena of creativity, and the prospects for the elaboration of a mature transdisciplinary unified theory. The Foreword is written by philosopher of science Arne Naess, and the Afterword is contributed by neuroscientist Karl Pribram.
This book guides readers (astronomers, physicists, and university students) through central questions of Practical Cosmology, a term used by the late Allan Sandage to denote the modern scientific endeavor to find the cosmological model best describing the universe of galaxies, its geometry, size, age, and matter composition. The authors draw on their personal experience in astrophysics and cosmology to explain key concepts of cosmology, both observational and theoretical, and to highlight several items which give cosmology its special character. These highlighted items are: Ideosyncratic features of the "cosmic laboratory," Malmquist bias in the determination of cosmic distances, Theory of gravitation as a cornerstone of cosmological models, Crucial tests for checking the reality of space expansion, Methods of analyzing the structures of the universe as mapped by galaxies, Usefulness of fractals as a model to describe the large-scale structure and new cosmological physics inherent in the Friedmann world model.
With stunning regularity, the search for our cosmic roots has been yielding remarkable new discoveries about the universe and our place in it. In his compelling book, Origins: The Quest for Our Cosmic Roots, veteran science journalist Tom Yulsman chronicles the latest discoveries and describes in clear and engaging terms what they mean. From the interior of protons to the outer reaches of the universe, and from the control room of one of the world's most powerful particle accelerators to an observatory atop the tallest mountain in the Pacific basin, Yulsman takes readers on a fantastic voyage at the cutting edge of science. How could the universe have sprouted from absolute nothingness? What is the origin of galaxies? How do stars and planets form? And despite what now seem to be incredible odds, how did Earth come to be a rich oasis of biodiversity-one that has given rise to a species intelligent enough to ask these questions? In laying out the answers, Origins addresses some of the most profound issues humans have ever confronted.
The mystery of gravity has captivated us for centuries. But what is gravity and how does it work? This engaging book delves into the bizarre and often counter-intuitive world of gravitational physics. Join distinguished astrophysicist Professor Luciano Rezzolla on this virtual journey into Einstein's world of gravity, with each milestone presenting ever more fascinating aspects of gravitation. Through gentle exposure to concepts such as spacetime curvature and general relativity, you will discover some of the most curious consequences of gravitational physics, such as black holes, neutron stars and gravitational waves. The author presents and explains one of the most impressive scientific achievements of recent times: the first image of a supermassive black hole. Written by one of the key scientists involved in producing these results, you'll get a behind-the-scenes view of how the image was captured and discover what happens to matter and light near a black hole.
Interpreting general relativity relies on a proper description of non-inertial frames and Dirac observables. This book describes global non-inertial frames in special and general relativity. The first part covers special relativity and Minkowski space time, before covering general relativity, globally hyperbolic Einstein space-time, and the application of the 3+1 splitting method to general relativity. The author uses a Hamiltonian description and the Dirac-Bergmann theory of constraints to show that the transition between one non-inertial frame and another is a gauge transformation, extra variables describing the frame are gauge variables, and the measureable matter quantities are gauge invariant Dirac observables. Point particles, fluids and fields are also discussed, including how to treat the problems of relative times in the description of relativistic bound states, and the problem of relativistic centre of mass. Providing a detailed description of mathematical methods, the book is perfect for theoretical physicists, researchers and students working in special and general relativity.
This book is a collection of contributions examining cosmology from multiple perspectives. It presents articles on traditional Native American and Chinese cosmologies and traces the historical roots of western cosmology from Mesopotamia and pre-Socratic Greece to medieval cosmology.
Stephen Hawking, the Lucasian Professor of Mathematics at Cambridge University, has made important theoretical contributions to gravitational theory and has played a major role in the development of cosmology and black hole physics. Hawking's early work, partly in collaboration with Roger Penrose, showed the significance of spacetime singularities for the big bang and black holes. His later work has been concerned with a deeper understanding of these two issues. The work required extensive use of the two great intellectual achievements of the first half of the Twentieth Century: general relativity and quantum mechanics; and these are reflected in the reprinted articles. Hawking's key contributions on black hole radiation and the no-boundary condition on the origin of the universe are included. The present compilation of Stephen Hawking's most important work also includes an introduction by him, which guides the reader though the major highlights of the volume. This volume is thus an essential item in any library and will be an important reference source for those interested in theoretical physics and applied mathematics. It is an excellent thing to have so many of Professor Hawking's most important contributions to the theory of black holes and space-time singularities all collected together in one handy volume. I am very glad to have them". Roger Penrose (Oxford) "This was an excellent idea to put the best papers by Stephen Hawking together. Even his papers written many years ago remain extremely useful for those who study classical and quantum gravity. By watching the evolution of his ideas one can get a very clear picture of the development of quantum cosmology during thelast quarter of this century". Andrei Linde (Stanford) "This review could have been quite short: 'The book contains a selection of 21 of Stephen Hawking's most significant papers with an overview written by the author'. This would be sufficient to convince any researcher, student or librarian to acquire the book, so indisputable is the contribution of this man to the theoretical physics of the last half of our century ... Collected together, these brilliant works constitute a valuable contribution to the literature on modern classical and quantum gravity and cosmology. This book will certainly be a source of inspiration for new generations of physicists entering into this fascinating area of research". D Gal'tsov Classical & Quantum Gravity
The Euclidean approach to Quantum Gravity was initiated almost 15 years ago in an attempt to understand the difficulties raised by the spacetime singularities of classical general relativity which arise in the gravitational collapse of stars to form black holes and the entire universe in the Big Bang. An important motivation was to develop an approach capable of dealing with the nonlinear, non-perturbative aspects of quantum gravity due to topologically non-trivial spacetimes. There are important links with a Riemannian geometry. Since its inception the theory has been applied to a number of important physical problems including the thermodynamic properties of black holes, quantum cosmology and the problem of the cosmological constant. It is currently at the centre of a great deal of interest.This is a collection of survey lectures and reprints of some important lectures on the Euclidean approach to quantum gravity in which one expresses the Feynman path integral as a sum over Riemannian metrics. As well as papers on the basic formalism there are sections on Black Holes, Quantum Cosmology, Wormholes and Gravitational Instantons.
The Euclidean approach to Quantum Gravity was initiated almost 15 years ago in an attempt to understand the difficulties raised by the spacetime singularities of classical general relativity which arise in the gravitational collapse of stars to form black holes and the entire universe in the Big Bang. An important motivation was to develop an approach capable of dealing with the nonlinear, non-perturbative aspects of quantum gravity due to topologically non-trivial spacetimes. There are important links with a Riemannian geometry. Since its inception the theory has been applied to a number of important physical problems including the thermodynamic properties of black holes, quantum cosmology and the problem of the cosmological constant. It is currently at the centre of a great deal of interest.This is a collection of survey lectures and reprints of some important lectures on the Euclidean approach to quantum gravity in which one expresses the Feynman path integral as a sum over Riemannian metrics. As well as papers on the basic formalism there are sections on Black Holes, Quantum Cosmology, Wormholes and Gravitational Instantons.
The last decade has witnessed a breathtaking expansion of ideas concerning the origin and evolution of the universe. Researchers in cosmology thus need an unprecedented wide background in diverse areas of physics. Bridging the gap that has developed, Physics of the Early Universe explains the foundations of this subject. This postgraduate-/research-level volume covers cosmology, gauge theories, the standard model, cosmic strings, and supersymmetry.
For most of human history, we have had a close relationship with the stars. Once they shaped our religious beliefs, power structures, scientific advances and even our biology. But over the last few centuries we have separated ourselves from the universe that surrounds us. And it comes at a cost. The Human Cosmos is a tour of this history: from the Hall of the Bulls in Lascaux to Tahitian sailors navigating by the stars; from medieval monks grappling with the nature of time to Einstein realising that space and time are the same. It shows we need to rediscover the universe we inhabit, its effect on our health, and its potential for inspiration and revelation.
In July 1992, over 300 astronomers attended the Third Tetons Summer School on the subject of "The Environment and Evolution of Galaxies". This book presents 28 papers based on invited review talks and a panel discussion on "The Nature of High Redshift Objects". The major themes include: the interstellar and intergalactic medium, galaxy formation and evolution, cooling flows, quasars and radiation backgrounds, and interactions between galaxies/AGNs and their environment. Recent advances with the ROSAT, COBE and Hubble Space Telescope are discussed, together with current theoretical developments. The tutorial nature of the papers should make this book a useful supplement for professional astonomers, graduate students, and senior undergraduates. As with previous Tetons conferences, this book provides both the current state of observational and theoretical research and material complementary to courses in extragalactic and interstellar astrophysics.
General relativity and quantum mechanics have become the two central pillars of theoretical physics. Moreover, general relativity has important applications in astrophysics and high-energy particle physics. Covering the fundamentals of the subject, Principles of Cosmology and Gravitation describes the universe as revealed by observations and presents a theoretical framework to enable important cosmological formulae to be derived and numerical calculations performed. Avoiding elaborate formal discussions, the book presents a practical approach that focuses on the general theory of relativity. It examines different evolutionary models and the gravitational effects of massive bodies. The book also includes a large number of worked examples and problems, half with solutions.
The motivation for the workshop on which this book is based was the discovery in recent years of a large number of binary and millisecond radio pulsars, in the galactic disk as well as in globular star clusters, the oldest stellar systems in our galaxy. These discoveries have revolutionized our thinking on many aspects concerning the interior structure and evolution of neutron stars, and have revived the interest in the study of neutron star physics in general. In this book some three dozen of the world's experts in the field of radio pulsars, X-ray binaries, stellar evolution, neutron star interiors and stellar dynamics review the latest observational discoveries as well as the current theoretical thinking on the formation and physics of binary X-ray sources and of the binary and milli-second pulsars. These include discoveries such as that of the elevent millisecond pulsars in the globular cluster 47 Tucanae, the relativistic effects in the new double neturon star system PSR 1534+12 and spectacular results from Germany's ROSAT X-Ray Observatory.
Planetary nebulae are a keystone for the understanding of the evolution of stars, for deep insights into the physical processes prevailing in highly excited dilute nebulae, and for the chemical evolution in galaxies. These objects, displaying an intriguing morphology, have a "short" lifetime of a few tens of thousands of years, and have become one of the best studied classes of celestial sources. However, despite large and successful efforts from both the observational and theoretical side, planetary nebulae still keep some of their secrets (like the widely unknown distances) and will undoubtedly also be objects of thorough investigations in the years to come.
The Constraint Equations.- The Penrose Inequality.- The Global Existence Problem in General Relativity.- Smoothness at Null Infinity and the Structure of Initial Data.- Status Quo and Open Problems in the Numerical Construction of Spacetimes.- The Einstein-Vlasov System.- Future Complete U(1) Symmetric Einsteinian Spacetimes, the Unpolarized Case.- Future Complete Vacuum Spacetimes.- The Cauchy Problem on Spacetimes That Are Not Globally Hyperbolic.- Cheeger-Gromov Theory and Applications to General Relativity.- Null Geometry and the Einstein Equations.- Group Actions on Lorentz Spaces, Mathematical Aspects: A Survey.- Gauge, Diffeomorphisms, Initial-Value Formulation, Etc. |
You may like...
The Disordered Cosmos - A Journey Into…
Chanda Prescod-Weinstein
Hardcover
R548
Discovery Miles 5 480
A Brief History Of Time - From Big Bang…
Stephen Hawking
Paperback
(4)
Starry Messenger - Cosmic Perspectives…
Neil De Grasse Tyson
Paperback
|