Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Astronomy, space & time > Cosmology & the universe
Some 25 years after the birth of inflationary cosmology, this volume sets out to provide both an authoritative and pedagogical introduction and review of the current state of the field. Readers learn about the arguments supporting the many different scenarios of cosmic inflation. Articles are written by eminent scientists, many of whom have made pioneering contributions to the field of inflationary cosmology.
Is planet earth the end of the line, or is space itself the next
stop?
Many times all of us could hear from mass media that an asteroid approached and swept past the Earth. Such an asteroid or comet will inevitably strike the planet some day. This volume considers hazards due to collisions with cosmic objects, particularly in light of recent investigations of impacts by the authors. Each chapter written by an expert contains an overview of an aspect and new findings in the field. The main hazardous effects cratering, shock, aerial and seismic waves, fires, ejection of dust and soot, tsunami are described and numerically estimated. Numerical simulations of impacts and impact consequences have received much attention in the book. Fairly small impacting objects 50 -100 m in diameter pose a real threat to humanity and their influence on the atmosphere and ionosphere is emphasized. Especially vulnerable are industrially developed areas with dense population, almost all Europe is one of them.
Geometrical Physics in Minkowski Spacetime is an overview and description of the geometry in spacetime, and aids in the creation and development of intuition in four-dimensional Minkowski space. The deepest understanding of relativity and spacetime is in terms of the geometrical absolutes, and this is what the book seeks to develop. The most interesting topics requiring special relativity are covered, including:SpacetimeVectors in SpacetimeElectromagnetismAsymptotic Momentum ConservationCovectors and Dyadics in SpacetimeEnergy Tensor Although the book is not meant for the complete beginner in special relativity, the mathematical prerequisites for the early chapters of the book are very few - linear algebra and elementary geometry (done using vectors and a scalar product). For the later chapters, multivariable calculus and ordinary differential equations are often needed.
"If you buy just one guide...you won't do better than this" - BBC Sky at Night Magazine "I will continue to enjoy 'Philip's Stargazing' as the months go by" - Helen Sharman, Astronaut "Very useful indeed" - Chris Lintott, Sky at Night presenter Discover the latest in stargazing with the new and definitive guide to the night sky. Whether you're a seasoned astronomer or just starting out, Philip's Stargazing 2022 is the only book you'll need. Compiled by experts and specially designed for use in Britain and Ireland, Stargazing 2022 acts as a handily illustrated and comprehensive companion. - 12 Brand-New Maps for year-round astronomical discovery - Month-to-Month information. Daily Moon Phase Calendar, highlighting special lunar events throughout the year - Planet Watch for ideal viewing days in 2022 - Avoid light pollution with our detailed Dark Sky Map - Expert advice and insight throughout from internationally renowned Professor Nigel Henbest - A 'Behind the Scenes' look at astrophotography from expert Robin Scagell - Complete calendar of major astronomical events, including the Top 20 Sky Sights of 2022 - Jargon Buster, explaining common or confusing terms - The planets' movements explained from solar and lunar eclipses to meteor showers and comets
Advanced technologies in astronomy at various wavelengths have provided us with high resolution and high quality data on the QSO population. This meeting was aimed at understanding the morphology and nature of the host galaxies and environments of QSOs. The invited lectures as well as the contributed and poster papers highlighted the main issues of current research: the stellar and gaseous content of the underlying galaxy; the characterization of the population of companions and the nature of their interaction with the host galaxy; the connection between radio-loud QSO and radio-galaxies, and QSOs and ULIRGs; the evolution with redshift of both the host galaxy and its environment, and the main implications in theories of galaxy formation and evolution. This volume provides a valuable overview and timely update of the exciting and rapidly developing field of QSO hosts and their environments - essential reading for graduate students and researchers.
The Encyclopedia of Cosmology, first published in 1993, recounts the history, philosophical assumptions, methodological ambiguities, and human struggles that have influenced the various responses to the basic questions of cosmology through the ages, as well as referencing important scientific theories. Just as the recognition of social conventions in other cultures can lead to a more productive perspective on our own behaviour, so too a study of the cosmologies of other times and places can enable us recognise elements of our own cosmology that might otherwise pass as inevitable developments. Apart from modern natural science, therefore, this volume incorporates brief treatments of Native American, Cave-Dweller, Chinese, Egyptian, Islamic, Megalithic, Mesopotamian, Greek, Medieval and Copernican cosmology, leading to an appreciation of cosmology as an intellectual creation, not merely a collection of facts. It is a valuable reference tool for any student or academic with an interest in the history of science and cosmology specifically.
A major outstanding problem in physics is understanding the nature of the dark energy that is driving the accelerating expansion of the Universe. This thesis makes a significant contribution by demonstrating, for the first time, using state-of-the-art computer simulations, that the interpretation of future galaxy survey measurements is far more subtle than is widely assumed, and that a major revision to our models of these effects is urgently needed. The work contained in the thesis was used by the WiggleZ dark energy survey to measure the growth rate of cosmic structure in 2011 and had a direct impact on the design of the surveys to be conducted by the European Space Agency's Euclid mission, a 650 million euro project to measure dark energy.
The ?eld of cosmology is currently undergoing a revolution driven by d- matic observational progress and by novel theoretical scenarios imported from particle physics. In particular, two most remarkable results were recently - tained from measurements of the angular spectrum of the ?uctuations in the Cosmic Microwave Background (CMB) radiation providing convincing e- dence that the Universe is nearly ?at and from the Hubble diagram of distant supernovae indicating an accelerating expansion rate, which implies the ex- tence of some dark energy as the dominant component of the Universe. Indeed, the next decade will bene't from high quality data on cosmology from diff- ent major experiments and observatories, with a particular important contri- tion from space missions such as WMAP, Planck Surveyor, XMM and SNAP among others. On one side, cosmologists believe they understand the origin of themain ingredients which allowacoherent description of theUniverse from its very earlyphase, namely in?ation, to the actual epoch which accounts for theoriginof theprimordial?uctuations, allowing predictions of their - prints inthe cosmicmicrowave skyandleading to the large scale structure of theUniverse as observed. Ontheother side, theexistence of a non-zero vacuum density is certainly one of the most astonishing results of modern f- damental physics. Understanding its nature andits originwill be one of the major directions of researchinthe following years. In view of the intensive current activity inthe ?eld, aSchoolfully dedicated to these both sides in cosmology was timely
The motivation for the workshop on which this book is based was the discovery in recent years of a large number of binary and millisecond radio pulsars, in the galactic disk as well as in globular star clusters, the oldest stellar systems in our galaxy. These discoveries have revolutionized our thinking on many aspects concerning the interior structure and evolution of neutron stars, and have revived the interest in the study of neutron star physics in general. In this book some three dozen of the world's experts in the field of radio pulsars, X-ray binaries, stellar evolution, neutron star interiors and stellar dynamics review the latest observational discoveries as well as the current theoretical thinking on the formation and physics of binary X-ray sources and of the binary and milli-second pulsars. These include discoveries such as that of the elevent millisecond pulsars in the globular cluster 47 Tucanae, the relativistic effects in the new double neturon star system PSR 1534+12 and spectacular results from Germany's ROSAT X-Ray Observatory.
The enormous advances in observational techniques over the last two decades has produced a wealth of data and unexpected discoveries which have helped to reshape astrophysics as a field with well-formulated theories and sophisticated numerical calculations. In nuclear particle physics, plasma physics, as well as in general relativity, the Universe has become a laboratory for cutting-edge research. The courses collected in the book are intended to provide students with this insight, giving a general background on each topic such as cosmic rays, nuclear and neutrino astrophysics, solar physics and strong fields, as well as a presentation of the current research and open problems. The book is aimed at graduate students in physics and astrophysics, as well as researchers, bridging a gap between the specialized reviews and the comprehensive books.
The Constraint Equations.- The Penrose Inequality.- The Global Existence Problem in General Relativity.- Smoothness at Null Infinity and the Structure of Initial Data.- Status Quo and Open Problems in the Numerical Construction of Spacetimes.- The Einstein-Vlasov System.- Future Complete U(1) Symmetric Einsteinian Spacetimes, the Unpolarized Case.- Future Complete Vacuum Spacetimes.- The Cauchy Problem on Spacetimes That Are Not Globally Hyperbolic.- Cheeger-Gromov Theory and Applications to General Relativity.- Null Geometry and the Einstein Equations.- Group Actions on Lorentz Spaces, Mathematical Aspects: A Survey.- Gauge, Diffeomorphisms, Initial-Value Formulation, Etc.
Planetary nebulae are a keystone for the understanding of the evolution of stars, for deep insights into the physical processes prevailing in highly excited dilute nebulae, and for the chemical evolution in galaxies. These objects, displaying an intriguing morphology, have a "short" lifetime of a few tens of thousands of years, and have become one of the best studied classes of celestial sources. However, despite large and successful efforts from both the observational and theoretical side, planetary nebulae still keep some of their secrets (like the widely unknown distances) and will undoubtedly also be objects of thorough investigations in the years to come.
Stellar Physics is a rather unique book among the growing literature on star formation and evolution. Not only does the author, a leading expert in the field, give a very thorough description of the current knowledge about stellar physics but he handles with equal care the many problems that this field of research still faces. A bibliography with well over 650 entries makes this book an unparalleled source of references.Fundamental Concepts and Stellar Equilibrium is the first of two volumes, and can be read, as can the second volume, as an independent work. It provides an extensive introduction into all physical processes that play a role in star formation and evolution. The basic equations describing stellar equilibrium are discussed, where attention is paid to both the theoretical and the numerical aspects.
Gravitational lensing is by now sufficiently well understood that it can be used as a tool of investigation in other astrophysical areas. Applications include the determination of the Hubble constant, probing the dark matter context of galaxies and the mapping of the universe to the identification of otherwise invisible large-scale structures. Each chapter of the book covers in a self-contained manner a subfield of gravitational lensing, with the double aim of describing in a simple way the basics of the theory and of reviewing the most recent developments as well as applications foreseen in the near future. The book will thus be particularly useful as a high-level textbook for nonspecialist researchers and advanced students wishing to become familiar with the field all the way up to the forefront of research.
Use of occultation methodology for observing the Earth's atmosphere and climate has become so broad as to comprise solar, lunar, stellar, navigation and satellite crosslink occultation methods. The atmospheric parameters obtained extend from the fundamental variables temperature, density, pressure, water vapor, and ozone via a multitude of trace gas species to particulate species such as aerosols and cloud liquid water. Ionospheric electron density is sensed as well. The methods all share the key properties of self-calibration, high accuracy and vertical resolution, global coverage, and (if using radio signals) all-weather capability. Occultation data are thus of high value in a wide range of fields including climate monitoring and research, atmospheric physics and chemistry, operational meteorology, and other fields such as space weather and planetary science. This wide area of variants and uses of the occultation method has led to a diversi fication of the occultation-related scientific community into a range of different sub-communities, however. The 1st International Workshop on Occultations for Probing Atmosphere and Cli mate-OPAC-1- held September 16-20, 2002, in Graz, Austria, has set in ex actly at this point. OPAC-1 aimed at providing a casual forum and stimulating at mosphere fertilizing scientific discourse, co-operation initiatives, and mutual learning and support amongst members of all the different sub-communities. The workshop was attended by about 80 participants from 17 different countries who actively contributed to a scientific programme of high quality and to an excellent workshop atmosphere, which was judged by the participants to have fully met the aims expressed.
A fundamental, profound review of the key issues relating to the early universe and the physical processes that occurred in it. The interplay between cosmic microwave background radiation, large scale structure, and the dark matter problem are stressed, with a central focus on the crucial issue of the phase transitions in the early universe and their observable consequences: baryon symmetry, baryogenesis and cosmological fluctuations. There is an interplay between cosmology, statistical physics and particle physics in studying these problems, both at the theoretical and the experimental / observational levels. Special contributions are devoted to primordial and astrophysical black holes and to high energy cosmic rays and neutrino astrophysics. There is also a special section devoted to the International Space Station and its scientific utilization.
Written by an international team of experts, this set of tutorial reviews provides a coherent and accessible summary of the current state of supernova research in all of its facets. The newly detected gamma-ray bursts are discussed in this context. While primarily addressing astrophysicists and astronomers, this book will also be of interest to cosmologists and nuclear physicists working on supernova-related issues.
Many books have been written about the Big Bang and how the universe became the way it is today. But what about the future of the universe? What will happen to the Earth and solar system? What about our galaxy? Indeed, how long will the universe as we recognize it survive? The Future of the Universe takes the reader on a journey through space and time, beginning with a long look at the Earth and solar system, voyaging to the outermost galaxies, and finishing with speculations about the life and fate of the entire universe.
The second Erice course in the school of Particle-Astrophysics was held in May, 1988. The topic choosen was Dark Matter. This is one of the most exciting top ics at the interface of particle physics and astrophysics. It is developing rapidly now due to a coming together not only of the theoretical concepts from the early universe with the theoretical concepts of galaxy formation, but also the coming to gether of the theorists, experimentalists and observers. It is with Dark Matter, the combined interrelated topics of galaxy formation and the generation of large scale structure that we see a confrontation of the exotic ideas from the early universe, such as phase transitions and unification, coming face to face with the realities of traditional observational cosmology. These realities have recently been heightened by the tremendous number of new observations, demonstrating that large scale structure of the universe is far more complex than anybody had suspected. In particular, we now see large scale foam, apparent large scale velocity fields, indicating devations from the Hubble flow, large scales of the order 100 Mpc, and galaxy formation occurring at high red shifts much greater than unity. We also see an apparent correlation of clusters of galaxies that may even exceed the c- relation of galaxies despite their being on much larger scales with lower average densities."
This book contains a series of lectures given at the NATO Advanced Study Institute (ASI) "Structure Formation in the Universe," held at the Isaac Newton Institute in Cambridge in August, 1999. The ASI was held at a critical juncture in the development of physical cosmology, when a flood of new data concerning the large scale structure of the Universe was just be coming available. There was an air of excitement and anticipation: would the standard theories fit the data, or would new ideas and models be re quired? Cosmology has long been a field of common interest between East and West, with many seminal contributions made by scientists working in the former Soviet Union and Eastern bloc. A major aim of the ASI was to bring together scientists from across the world to discuss exciting recent developments and strengthen links. However, a few months before the meeting it appeared that it might have to be cancelled. The war in the former Yugoslavia escalated and NATO began a protracted bombing cam paign against targets in Kosovo and Serbia. Many scientists felt uneasy about participating in a NATO-funded meeting in this situation. After a great deal of discussion, it was agreed that the developing East West conflict only heightened the need for further communication and that the school should go ahead as planned, but with a special session devoted to discussion of the legitimacy of NATO's actions."
In recent years there has been a steadily increasing cross-fertilization between cosmology and particle physics, on both the theoretical and experimental levels. Particle physics has provided new experimental data from the big accelerators in operation, and data from space satellites are accumulating rapidly. Cosmology is still one of the best laboratories for testing particle theory. The present work discusses such matters in the context of inflation, strings, dark matter, neutrinos and gravitational wave physics in the very early universe, field theory at the Planck scale, and high energy physics. A particular emphasis has been placed on a new topology for spatial infinity, on the relation between temperature and gravitational potential, a canonical formulation of general relativity, the neutrino mass, spin in the early universe, the measurement of gravity in the 10--100 m range, galaxy--galaxy and cluster--cluster correlation, black holes, string theory and string/string duality. The work also presents a beautiful review of high energy elementary particle physics, treating the meaning, status and perspectives of unification and standard model gauge couplings. |
You may like...
Starry Messenger - Cosmic Perspectives…
Neil De Grasse Tyson
Paperback
A Brief History Of Time - From Big Bang…
Stephen Hawking
Paperback
(4)
The Disordered Cosmos - A Journey Into…
Chanda Prescod-Weinstein
Hardcover
|