![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time > Cosmology & the universe
Gravitational lensing is by now sufficiently well understood that it can be used as a tool of investigation in other astrophysical areas. Applications include the determination of the Hubble constant, probing the dark matter context of galaxies and the mapping of the universe to the identification of otherwise invisible large-scale structures. Each chapter of the book covers in a self-contained manner a subfield of gravitational lensing, with the double aim of describing in a simple way the basics of the theory and of reviewing the most recent developments as well as applications foreseen in the near future. The book will thus be particularly useful as a high-level textbook for nonspecialist researchers and advanced students wishing to become familiar with the field all the way up to the forefront of research.
The second Erice course in the school of Particle-Astrophysics was held in May, 1988. The topic choosen was Dark Matter. This is one of the most exciting top ics at the interface of particle physics and astrophysics. It is developing rapidly now due to a coming together not only of the theoretical concepts from the early universe with the theoretical concepts of galaxy formation, but also the coming to gether of the theorists, experimentalists and observers. It is with Dark Matter, the combined interrelated topics of galaxy formation and the generation of large scale structure that we see a confrontation of the exotic ideas from the early universe, such as phase transitions and unification, coming face to face with the realities of traditional observational cosmology. These realities have recently been heightened by the tremendous number of new observations, demonstrating that large scale structure of the universe is far more complex than anybody had suspected. In particular, we now see large scale foam, apparent large scale velocity fields, indicating devations from the Hubble flow, large scales of the order 100 Mpc, and galaxy formation occurring at high red shifts much greater than unity. We also see an apparent correlation of clusters of galaxies that may even exceed the c- relation of galaxies despite their being on much larger scales with lower average densities."
Written by an international team of experts, this set of tutorial reviews provides a coherent and accessible summary of the current state of supernova research in all of its facets. The newly detected gamma-ray bursts are discussed in this context. While primarily addressing astrophysicists and astronomers, this book will also be of interest to cosmologists and nuclear physicists working on supernova-related issues.
A fundamental, profound review of the key issues relating to the early universe and the physical processes that occurred in it. The interplay between cosmic microwave background radiation, large scale structure, and the dark matter problem are stressed, with a central focus on the crucial issue of the phase transitions in the early universe and their observable consequences: baryon symmetry, baryogenesis and cosmological fluctuations. There is an interplay between cosmology, statistical physics and particle physics in studying these problems, both at the theoretical and the experimental / observational levels. Special contributions are devoted to primordial and astrophysical black holes and to high energy cosmic rays and neutrino astrophysics. There is also a special section devoted to the International Space Station and its scientific utilization.
Use of occultation methodology for observing the Earth's atmosphere and climate has become so broad as to comprise solar, lunar, stellar, navigation and satellite crosslink occultation methods. The atmospheric parameters obtained extend from the fundamental variables temperature, density, pressure, water vapor, and ozone via a multitude of trace gas species to particulate species such as aerosols and cloud liquid water. Ionospheric electron density is sensed as well. The methods all share the key properties of self-calibration, high accuracy and vertical resolution, global coverage, and (if using radio signals) all-weather capability. Occultation data are thus of high value in a wide range of fields including climate monitoring and research, atmospheric physics and chemistry, operational meteorology, and other fields such as space weather and planetary science. This wide area of variants and uses of the occultation method has led to a diversi fication of the occultation-related scientific community into a range of different sub-communities, however. The 1st International Workshop on Occultations for Probing Atmosphere and Cli mate-OPAC-1- held September 16-20, 2002, in Graz, Austria, has set in ex actly at this point. OPAC-1 aimed at providing a casual forum and stimulating at mosphere fertilizing scientific discourse, co-operation initiatives, and mutual learning and support amongst members of all the different sub-communities. The workshop was attended by about 80 participants from 17 different countries who actively contributed to a scientific programme of high quality and to an excellent workshop atmosphere, which was judged by the participants to have fully met the aims expressed.
In recent years there has been a steadily increasing cross-fertilization between cosmology and particle physics, on both the theoretical and experimental levels. Particle physics has provided new experimental data from the big accelerators in operation, and data from space satellites are accumulating rapidly. Cosmology is still one of the best laboratories for testing particle theory. The present work discusses such matters in the context of inflation, strings, dark matter, neutrinos and gravitational wave physics in the very early universe, field theory at the Planck scale, and high energy physics. A particular emphasis has been placed on a new topology for spatial infinity, on the relation between temperature and gravitational potential, a canonical formulation of general relativity, the neutrino mass, spin in the early universe, the measurement of gravity in the 10--100 m range, galaxy--galaxy and cluster--cluster correlation, black holes, string theory and string/string duality. The work also presents a beautiful review of high energy elementary particle physics, treating the meaning, status and perspectives of unification and standard model gauge couplings.
This book contains a series of lectures given at the NATO Advanced Study Institute (ASI) "Structure Formation in the Universe," held at the Isaac Newton Institute in Cambridge in August, 1999. The ASI was held at a critical juncture in the development of physical cosmology, when a flood of new data concerning the large scale structure of the Universe was just be coming available. There was an air of excitement and anticipation: would the standard theories fit the data, or would new ideas and models be re quired? Cosmology has long been a field of common interest between East and West, with many seminal contributions made by scientists working in the former Soviet Union and Eastern bloc. A major aim of the ASI was to bring together scientists from across the world to discuss exciting recent developments and strengthen links. However, a few months before the meeting it appeared that it might have to be cancelled. The war in the former Yugoslavia escalated and NATO began a protracted bombing cam paign against targets in Kosovo and Serbia. Many scientists felt uneasy about participating in a NATO-funded meeting in this situation. After a great deal of discussion, it was agreed that the developing East West conflict only heightened the need for further communication and that the school should go ahead as planned, but with a special session devoted to discussion of the legitimacy of NATO's actions."
How old is our Universe? At what speed is our Universe expanding? Is our universe flat or curved? How is the hierarchical structure of the present Universe formed? The purpose of IAU Symposium 183 on the Cosmological Parameters and the Evolution of the Universe was to encourage a state-of-the-art discussion and assessment of cosmology by putting together the latest observational data and theoretical ideas on the evolution of the universe and cosmological parameters. In this volume, excellent reviews on these subjects by distinguished scientists are included. The first article by M.S. Longair, Cosmological Parameters and the Evolution of the Universe: Progress and Prospect', is a magnificent general review which can be understood by non-specialists. The other reviews include Hubble Constants (W.L. Freedman, G.A. Tammann), Microwave Background Radiation (R.B. Partridge, N. Sugiyama), Galaxy Formation and Evolution (R.S. Ellis) and Alternative Cosmological Models (J.V. Narlikar). In addition to the reviews, recent observational and theoretical developments by outstanding active scientists are included.
This NATO Advanced Study Institute provided an up dated understanding, from a fundamental and deep point of view, of the progress and current problems in the early universe, cosmic microwave background radiation, large scale structure, dark matter problem, and the interplay between them. The focus was placed on the Cosmic Microwave Background Radiation. Emphasis was given to the mutual impact of fundamental physics and cosmology, both at theoretical and experimental-or observational-levels, within a deep and well defined programme, and a global unifying view, which, in addition, provides of careful inter-disciplinarity. Special Lectures were devoted to neutrinos in astrophysics and high energy astrophysics. In addition, each Course of this series, introduced and promoted topics or subjects, which, although not being of purely astrophysical or cosmological nature, were of relevant physical interest for astrophysics and cosmology. Deep understanding, clarification, synthesis, careful interdisciplinarity within a fundamental physics framework, werethe maingoals ofthe course. Lectures ranged from a motivation and pedagogical introduction for students and participants not directly working in the field to the latest developmentsand most recent results. All Lectures were plenary, had the same duration and were followed by a discussion. The Course brought together experimentalists and theoretical physicists, astrophysicists and astronomers from a variety of backgrounds, including young scientists at post-doctoral level, senior scientists and advanced graduatestudentsas well.
This classic text, aimed at senior undergraduates and beginning graduate students in physics and astronomy, presents a wide range of astrophysical concepts in sufficient depth to give the reader a quantitative understanding of the subject. Emphasizing physical concepts, the book outlines cosmic events, but does not portray them in detail - it provides a series of astrophysical sketches. For this third edition, nearly every part of the text has been reconsidered and rewritten; new sections have been added to cover recent developments, and most of the rest has been revised and brought up to date. The book begins with an outline of the scope of modern astrophysics and the elementary problems concerning the scale of cosmic objects and events. The basic physics needed to answer these questions is developed in the next chapters, using specific astronomical processes as examples. The second half of the book enlarges on the topics introduced at the beginning and shows how we can obtain quantitative insights into the structure and evolution of stars, the dynamics of cosmic gases, the large-scale behavior of the universe, and the origins of life. supernovae, comets, quasars) are mentioned throughout the text whenever the relevant physics is discussed rather than in individual sections. To compensate, there is an appendix that gives a brief background of astronomical concepts for students unfamiliar with astronomical terminology, as well as a comprehensive index. The extensive bibliography refers to other sources that treat individual topics in detail.
Comet nuclei are the most primitive bodies in the solar system. They have been created far away from the early Sun and their material properties have been altered the least since their formation. Thus, the composition and structure of comet nuclei provide the best information about the chemical and thermodynamic conditions in the nebula from which our solar system formed. In this volume, cometary experts review a broad spectrum of ideas and conclusions based on in situ measurement of Comet Halley and remote sensing observations of the recent bright Comets Hale-Bopp and Hyakutake. The chemical character of comet nuclei suggests many close similarities with the composition of interstellar clouds. It also suggests material mixing from the inner solar nebula and challenges the importance of the accretion shock in the outer nebula. The book is intended to serve as a guide for researchers and graduate students working in the field of planetology and solar system exploration. Several special indexes focus the reader's attention to detailed results and discussions. It concludes with recommendations for laboratory investigations and for advanced modeling of comets, the solar nebula, and the collapse of interstellar clouds.
The Encyclopedia of Cosmology, first published in 1993, recounts the history, philosophical assumptions, methodological ambiguities, and human struggles that have influenced the various responses to the basic questions of cosmology through the ages, as well as referencing important scientific theories. Just as the recognition of social conventions in other cultures can lead to a more productive perspective on our own behaviour, so too a study of the cosmologies of other times and places can enable us recognise elements of our own cosmology that might otherwise pass as inevitable developments. Apart from modern natural science, therefore, this volume incorporates brief treatments of Native American, Cave-Dweller, Chinese, Egyptian, Islamic, Megalithic, Mesopotamian, Greek, Medieval and Copernican cosmology, leading to an appreciation of cosmology as an intellectual creation, not merely a collection of facts. It is a valuable reference tool for any student or academic with an interest in the history of science and cosmology specifically.
This volume tries to summarize the status of observational knowledge of the Kuiper Belt. Its recent discovery has revitalized the astromomical study of the Solar System and is beginning to open new and unexpected windows on the physics of planetesimal accretion. With more and better observational data being obtained at the technological limit of current facilities, a new perception of the relationships that exist among the various classes of small Solar System bodies has emerged. The new observations have also motivated a number of fascinating theoretical studies in Solar System dynamics.
The open cluster NGC 6791 is now considered both the oldest and the most metal-rich known. Its age is 8 -10 Gyrs, twice as old as the canonical solar-metallicity cluster M67 (Garnavich et al. 1994; Demarque, Green, & Guenther 1992; Tripicco et al. 1995). That its metallicity is significantly above solar is suggested from moderate-resolution spectroscopy and from a mismatch of its color-magnitude diagram (CMD) with solar-metallicity isochrones. Tripicco et al. (1995) find [Fe/H] = +0.27 to +0.44. The cluster population is rich. In addition to about a dozen red giants and two dozen red horizontal-branch stars, the cluster has several very hot HB stars (Kaluzny & Udalski 1992). Liebert et al. (1994) have shown that the extremely blue stars are mostly sdB/sdO stars and at least 3 or 4 are likely cluster members, the first ever discovered in an open cluster. These may provide the key to the puzzling upturn in ultraviolet flux below 1500A seen in many high-metallicity systems (Burstein et al. 1988; Ferguson et al. & Liebert 1993).
Digital sky surveys, data from orbiting telescopes, and advances in computation have increased the quantity and quality of astronomical data by several orders of magnitude in recent years. Making sense of this wealth of data requires sophisticated statistical and data analytic techniques. Fortunately, statistical methodologies have similarly made great strides in recent years. Powerful synergies thus emerge when astronomers and statisticians join in examining astrostatistical problems and approaches. The volume focuses on several themes: · The increasing power of Bayesian approaches to modeling astronomical data · The growth of enormous databases, leading an emerging federated Virtual Observatory, and their impact on modern astronomical research · Statistical modeling of critical datasets, such as galaxy clustering and fluctuations in the microwave background radiation, leading to a new era of precision cosmology · Methodologies for uncovering clusters and patterns in multivariate data · The characterization of multiscale patterns in imaging and time series data As in earlier volumes in this series, research contributions discussing topics in one field are joined with commentary from scholars in the other. Short contributed papers covering dozens of astrostatistical topics are also included.
Right now, you are orbiting a black hole. The Earth orbits the Sun, and the Sun orbits the centre of the Milky Way: a supermassive black hole, the strangest and most misunderstood phenomenon in the galaxy. In A Brief History of Black Holes, the award-winning University of Oxford researcher Dr Becky Smethurst charts five hundred years of scientific breakthroughs in astronomy and astrophysics. She takes us from the earliest observations of the universe and the collapse of massive stars, to the iconic first photographs of a black hole and her own published findings. A cosmic tale of discovery, Becky explains why black holes aren't really 'black', that you never ever want to be 'spaghettified', how black holes are more like sofa cushions than hoovers and why, beyond the event horizon, the future is a direction in space rather than in time. Told with humour and wisdom, this captivating book describes the secrets behind the most profound questions about our universe, all hidden inside black holes. 'A jaunt through space history . . . with charming wit and many pop-culture references' - BBC Sky At Night Magazine
This work investigates the theoretical and cosmological implications of modifying Einstein's theory of general relativity. It explores two classes of modifications to gravity: those in which the graviton is given a small mass, and those in which Lorentz invariance is spontaneously broken. It elucidates the nature of cosmological perturbations in theories of massive bimetric gravity, including a potentially deadly instability. Theories of gravity beyond general relativity could explain why the expansion of the Universe is accelerating, obviating the need for a dark energy, and can also affect the evolution of the early Universe. Next, it investigates the nature of spacetime in massive gravity theories that contain two different spacetime metrics. Lastly, the strongest constraints to date are placed on the size of Lorentz-violating effects in the gravity sector during inflation.
Recent advances in our understanding of instabilities in galactic type systems have led to an unravelling of some of the mysteries of what determines the form galaxies take. This book focuses on the mathematical development of the subject, assuming no prior knowledge of it, with a strong emphasis on the underlying physical interpretation. This framework is used to discuss the most relevant instabilities which are believed to be closely involved in the way galaxies are formed, in a model independent manner. The relevant observed properties of galaxies that may be used to establish the role of these physical mechanisms are discussed. The book also includes a chapter discussing numerical simulation techniques, with attention paid to their limitations and to recent advances in this approach. It is demonstrated that recent developments in computer hardware enable a detailed comparison of simulations with analysis. Thus the simulations extend our physical understanding beyond the limitations of the analysis. The book is intended for use by postgraduate students and researchers in the areas of cosmology, extragalactic astronomy and dynamics.
"If you buy just one guide...you won't do better than this" - BBC Sky at Night Magazine "I will continue to enjoy 'Philip's Stargazing' as the months go by" - Helen Sharman, Astronaut "Very useful indeed" - Chris Lintott, Sky at Night presenter Discover the latest in stargazing with the new and definitive guide to the night sky. Whether you're a seasoned astronomer or just starting out, Philip's Stargazing 2022 is the only book you'll need. Compiled by experts and specially designed for use in Britain and Ireland, Stargazing 2022 acts as a handily illustrated and comprehensive companion. - 12 Brand-New Maps for year-round astronomical discovery - Month-to-Month information. Daily Moon Phase Calendar, highlighting special lunar events throughout the year - Planet Watch for ideal viewing days in 2022 - Avoid light pollution with our detailed Dark Sky Map - Expert advice and insight throughout from internationally renowned Professor Nigel Henbest - A 'Behind the Scenes' look at astrophotography from expert Robin Scagell - Complete calendar of major astronomical events, including the Top 20 Sky Sights of 2022 - Jargon Buster, explaining common or confusing terms - The planets' movements explained from solar and lunar eclipses to meteor showers and comets
This book reviews the interconnection of cosmology and particle physics over the last decade. It provides introductory courses in supersymmetry, superstring and M-theory, responding to an increasing interest to evaluate the cosmological consequences of these theories. Based on a series of extended courses providing an introduction to the physics of the very early universe, in the light of the most recent advances in our understanding of the fundamental interactions, it reviews all the classical issues (inflation, primordial fluctuations, dark matter, baryogenesis), but also introduces the most recent ideas about what happened at the Big Bang, and before. |
You may like...
The Disordered Cosmos - A Journey Into…
Chanda Prescod-Weinstein
Hardcover
R548
Discovery Miles 5 480
A Brief History Of Time - From Big Bang…
Stephen Hawking
Paperback
(4)
|