![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Astronomy, space & time > Cosmology & the universe
Einstein's general theory of relativity is introduced in this
advanced undergraduate and beginning graduate level textbook.
Topics include special relativity, in the formalism of Minkowski's
four-dimensional space-time, the principle of equivalence,
Riemannian geometry and tensor analysis, Einstein field equation,
as well as many modern cosmological subjects, from primordial
inflation and cosmic microwave anisotropy to the dark energy that
propels an accelerating universe.
The last decade of this century has seen a renewed interest in the dynamics and physics of the small bodies of the Solar System, Asteroids, Comets and Meteors. New observational evidences such as the discovery of the Edgeworth-Kuiper belt, refined numerical tools such as the symplectic integrators, analytical tools such as semi-numerical perturbation algorithms and in general a better understanding of the dynamics of Hamiltonian systems, all these factors have converged to make possible and worthwhile the study, over very long time spans, of these "minor" objects. Also the public, the media and even some political assell}blies have become aware that these "minor" objects of our planetary environnement could become deadly weapons. Apparently they did have a role in Earth history and a role more ominous than "predicting" defeat (or victory, why not?) to batches of credulous rulers. Remembering what may have happened to the dinosaurs but keeping all the discretion necessary to avoid creating irrational scares, it may not be unwise or irrelevant to improve our knowledge of the physics and dynamics of these objects and to study in particular their interactions with our planet.
A Nobel Prize-winning physicist explains what happened at the very beginning of the universe, and how we know, in this popular science classic. Our universe has been growing for nearly 14 billion years. But almost everything about it, from the elements that forged stars, planets, and lifeforms, to the fundamental forces of physics, can be traced back to what happened in just the first three minutes of its life. In this book, Nobel Laureate Steven Weinberg describes in wonderful detail what happened in these first three minutes. It is an exhilarating journey that begins with the Planck Epoch - the earliest period of time in the history of the universe - and goes through Einstein's Theory of Relativity, the Hubble Red Shift, and the detection of the Cosmic Microwave Background. These incredible discoveries all form the foundation for what we now understand as the "standard model" of the origin of the universe. The First Three Minutes examines not only what this model looks like, but also tells the exciting story of the bold thinkers who put it together. Clearly and accessibly written, The First Three Minutes is a modern-day classic, an unsurpassed explanation of where it is we really come from.
The modern Persian word for cosmology is "Keyhan-shenakht," which is also the title of a Persian book written more than 800 years ago. The same term can also be found in Old Persian. In spite of this old tradition, modern cosmology is a new omer within the scientific disciplines in Iran. The cosmology community' is small and not yet well established. Given the spectacular recent advances in observational and theoretical cosmology, the large amount of new observational data which will become available in the near future, and the rapid expansion of the international cosmology community, it was realized that Iran should play a more active role in the exciting human endeavour which cosmology constitutes. This was the main motivation to establish a School on Cosmology in Iran. The plan is to hold a cosmology school every three years somewhere in Iran. The focus of this First School on Cosmology was chosen to be structure formation, a rapidly evolving cornerstone of modern cosmology. The topics of the school were selected in order to give both a broad overview of the current status of cosmological structure formation, and an in-depth dis cussion of the key issues theory of cosmological perturbations and analysis of cosmic microwave anisotropies. The lectures by Blanchard and Sarkar give an overview of homogeneous cosmological models and standard big bang cosmology. In his contribution, Padmanabhan presents a comprehen sive discussion of the growth of cosmological perturbations."
Our vast Universe is filled with an enormous amount of matter and energy, which are the source of large gravitational potentials affecting all physical phenomena. Because this fact about the size and contents of the Universe was not known when our fundamental theories of dynamics and relativity were completed by the 1920s, the current theories - based as they are in empty space - fail to incorporate cosmic gravity. Though the current theories are consistent with the majority of empirical facts, there are some crucial discrepancies, which demand a drastic shift to a cosmic gravitational paradigm for the theories of relativity and dynamics. The book is a detailed and widely accessible account of this paradigm, called Cosmic Relativity, supported by ample empirical evidence. It is established that all motional relativistic effects are cosmic gravitational effects. The new theory of Cosmic Relativity solves and answers all outstanding questions and puzzles about dynamics and relativity.
The aim of this book is to give graduate students an overview of quantum gravity but it also covers related topics from astrophysics. Some well-written contributions can serve as an introduction into basic conceptual concepts like time in quantum gravity or the emergence of a classical world from quantum cosmology. This makes the volume attractive to philosophers of science, too. Other topics are black holes, gravitational waves and non-commutative extensions of physical theories.
In each generation, scientists must redefine their fields: abstracting, simplifying and distilling the previous standard topics to make room for new advances and methods. Sethna's book takes this step for statistical mechanics--a field rooted in physics and chemistry whose ideas and methods< br> are now central to information theory, complexity, and modern biology. Aimed at advanced undergraduates and early graduate students in all of these fields, Sethna limits his main presentation to the topics that future mathematicians and biologists, as well as physicists and chemists, will find< br> fascinating and central to their work. The amazing breadth of the field is reflected in the author's large supply of carefully crafted exercises, each an introduction to a whole field of study: everything from chaos through information theory to life at the end of the universe.
Don Handelman's groundbreaking work in anthropology is showcased in this collection of his most powerful essays, edited by Matan Shapiro and Jackie Feldman. The book looks at the intellectual and spiritual roots of Handelman's initiation into anthropology; his work on ritual and on "bureaucratic logic"; analyses of cosmology; and innovative essays on Anthropology and Deleuzian thinking. Handelman reconsiders his theory of the forming of form and how this relates to a new theory of the dynamics of time. This will be the definitive collection of articles by one of the most important anthropologists of the late 20th Century.
Manolis Plionis & Spiros Cotsakis plionis@sapfo. astro. noa. gr skot@aegean. gr Since the dawn of human civilisation natural phenomena have been subject to observation and investigation by the humans who initially ascribed to them 'divine' powers. Gods of 'good' and 'evil' werecreatedaccording to the useful- ness or notofsuch unexplained, atthetime, phenomena. Astheir understanding of the world developed and deepened, the divine powers, religious beliefs, su- perstitions and mysticism gave their place to the knowledge, limited that it may be, of physical reality. However, many issues have been and still are out of grasp of human understanding. These issues have always been at the center of philosophical, theological, and more recently, scientific debate. It is to us incredible that many of the conclusions concerning the true scientific explanation of the external world, to which the ancient Greeks arrived purely on the basis of abstract thought, came so near to modem scientific ideas and also form the basis of modem science. We cannot but stand with amazement at the original thoughts of Archimedes who, among his many extraordinary achieve- ments in mathematics and physics, calculated (cf. TheSandReckoner) the mass density of the observable universe and came up with a figure that is in complete agreement with current estimates coming from observational cosmology.
Methods and Materials for Remote Sensing: Infrared Photo-Detectors,
Radiometers and Arrays presents the basic principles and the
guidelines for the design of IR and microwave radiometers intended
for the detection of weak electromagnetic signals in a noisy
background.
'A fascinating exploration of how we learned what matter really is, and the journey matter takes from the Big Bang, through exploding stars, ultimately to you and me.' - Sean Carroll, author of Something Deeply Hidden 'If you wish to make an apple pie from scratch, you must first invent the universe.' - Carl Sagan We probably all have a vague idea of how to make an apple pie: mix flour and butter, throw in some apples and you're probably most of the way there, right? Think again. Making an apple pie from scratch requires ingredients that definitely aren't available in the supermarket, ovens that can reach temperatures of trillions of degrees, and a preparation time of 13.8 billion years. Inspired by Sagan's famous line, Harry Cliff ventures out in search of the ultimate apple pie recipe, tracing the ingredients of our universe through the hearts of dying stars and back in time to a tiny fraction of a second after our universe began. Along the way, he confronts some really big questions: What is matter really made of? How does the stuff around us escape annihilation in the fearsome heat of the Big Bang? And will we ever be able to understand the very first moments of our universe? In pursuit of answers, Cliff ventures to the largest underground research facility in the world, deep beneath Italy's Gran Sasso mountains, where scientists gaze into the heart of the Sun using the most elusive of particles, the ghostly neutrino. He visits CERN in Switzerland to explore the 'Antimatter Factory' where this stuff of science fiction is manufactured daily (and we're close to knowing whether it falls upwards). And he reveals what the latest data from the Large Hadron Collider may be telling us about the fundamental ingredients of matter. Along the way, Cliff illuminates the history of physics, chemistry, and astronomy that brought us to our present understanding of the world, while offering readers a front-row seat to one of the most dramatic intellectual journeys human beings have ever embarked on. A transfixing deep dive into origins of our world, How to Make an Apple Pie from Scratch doesn't just put the makeup of our universe under the microscope, but the awe-inspiring, improbable fact that it exists at all.
This book is written from the viewpoint that a deep connection exists between cosmology and particle physics. It presents the results and ideas on both the homogeneous and isotropic Universe at the hot stage of its evolution and in later stages. The main chapters describe in a systematic and pedagogical way established facts and concepts on the early and the present Universe. The comprehensive treatment, hence, serves as a modern introduction to this rapidly developing field of science. To help in reading the chapters without having to constantly consult other texts, essential materials from General Relativity and the theory of elementary particles are collected in the appendices. Various hypotheses dealing with unsolved problems of cosmology, and often alternative to each other, are discussed at a more advanced level. These concern dark matter, dark energy, matter-antimatter asymmetry, etc.Particle physics and cosmology underwent rapid development between the first and the second editions of this book. In the second edition, many chapters and sections have been revised, and numerical values of particle physics and cosmological parameters have been updated.
This book is written from the viewpoint that a deep connection exists between cosmology and particle physics. It presents the results and ideas on both the homogeneous and isotropic Universe at the hot stage of its evolution and in later stages. The main chapters describe in a systematic and pedagogical way established facts and concepts on the early and the present Universe. The comprehensive treatment, hence, serves as a modern introduction to this rapidly developing field of science. To help in reading the chapters without having to constantly consult other texts, essential materials from General Relativity and the theory of elementary particles are collected in the appendices. Various hypotheses dealing with unsolved problems of cosmology, and often alternative to each other, are discussed at a more advanced level. These concern dark matter, dark energy, matter-antimatter asymmetry, etc.Particle physics and cosmology underwent rapid development between the first and the second editions of this book. In the second edition, many chapters and sections have been revised, and numerical values of particle physics and cosmological parameters have been updated.
Early Universe cosmology is an active area of research and cosmic inflation is a pillar of modern cosmology. Among predictions of inflation, observationally the most important one is the generation of cosmological perturbations from quantum vacuum fluctuations that source all inhomogeneous structures in the Universe, not to mention the large-scale structures such as clusters of galaxies.Cosmological perturbation theory is the basic tool to study the perturbations generated from inflation. There are a few different approaches to primordial cosmological perturbations. In the conventional approach one perturbs the field equations and after quantizing the perturbations by the use of the corresponding action, one calculates the power spectrum of cosmological observables. This approach extends to higher order perturbations such as bispectrum etc., but the analysis becomes increasingly difficult.The delta N formalism, the topic of this book, is an alternative approach. The novelty of this approach is that, under the condition that the scale of interest is very large so that the spatial derivatives may be ignored in the dynamics, it can be applied to all orders in perturbation theory and has a rigorous foundation in general relativity. Thanks to the fact that one can evaluate perturbations with only the knowledge of background solutions, it is proved to be much easier than the conventional approach in evaluating higher order effects in many cases.
Modified gravity models play an important role in contemporary theoretical cosmology. The present book proposes a novel approach to the topic based on techniques from noncommutative geometry, especially the spectral action functional as a gravity model. The book discusses applications to early universe models and slow-roll inflation models, to the problem of cosmic topology, to non-isotropic cosmologies like mixmaster universes and Bianchi IX gravitational instantons, and to multifractal structures in cosmology.Relations between noncommutative and algebro-geometric methods in cosmology is also discussed, including the occurrence of motives, periods, and modular forms in spectral models of gravity.
Modified gravity models play an important role in contemporary theoretical cosmology. The present book proposes a novel approach to the topic based on techniques from noncommutative geometry, especially the spectral action functional as a gravity model. The book discusses applications to early universe models and slow-roll inflation models, to the problem of cosmic topology, to non-isotropic cosmologies like mixmaster universes and Bianchi IX gravitational instantons, and to multifractal structures in cosmology.Relations between noncommutative and algebro-geometric methods in cosmology is also discussed, including the occurrence of motives, periods, and modular forms in spectral models of gravity.
The growth of cosmology into a precision science represents one of the most remarkable stories of the past century. Much has been written chronicling this development, but rarely has any of it focused on the most critical element of this work-the cosmic spacetime itself. Addressing this lacuna is the principal focus of this book, documenting the growing body of evidence compelling us-not only to use this famous solution to Einstein's equations in order to refine the current paradigm, but-to probe its foundation at a much deeper level. Its excursion from the smallest to largest possible scales insightfully reveals an emerging link between the Universe we behold and the established tenets of our most fundamental physical theories. Key Features: Uncovers the critical link between the Local Flatness Theorem in general relativity and the symmetries informing the spacetime's metric coefficients Develops a physical explanation for some of the most unpalatable coincidences in cosmology Provides a sober assessment of the horizon problems precluding our full understanding of the early Universe Reveals a possible explanation for the origin of rest-mass energy in Einstein's theory In spite of its technical layout, this book does not shy away from introducing the principal players who have made the most enduring contributions to this field. Anyone with a graduate level foundation in physics and astronomy will be able to easily follow its contents.
Preface. Notation. Copyright Acknowledgements. Part One Preliminaries. Part Two the General Theory of Relativity. Part Three Applications of Feneral Relativity. Part Four Formal Developments. Part Five Cosmology. Appendix. Some Useful Numbers. Index.
An award-winning science journalist details the quest to isolate and understand dark matter-and shows how that search has helped us to understand the universe we inhabit. When you train a telescope on outer space, you can see luminous galaxies, nebulae, stars, and planets. But if you add all that together, it constitutes only 15 percent of the matter in the universe. Despite decades of research, the nature of the remaining 85 percent is unknown. We call it dark matter. In The Elephant in the Universe, Govert Schilling explores the fascinating history of the search for dark matter. Evidence for its existence comes from a wealth of astronomical observations. Theories and computer simulations of the evolution of the universe are also suggestive: they can be reconciled with astronomical measurements only if dark matter is a dominant component of nature. Physicists have devised huge, sensitive instruments to search for dark matter, which may be unlike anything else in the cosmos-some unknown elementary particle. Yet so far dark matter has escaped every experiment. Indeed, dark matter is so elusive that some scientists are beginning to suspect there might be something wrong with our theories about gravity or with the current paradigms of cosmology. Schilling interviews both believers and heretics and paints a colorful picture of the history and current status of dark matter research, with astronomers and physicists alike trying to make sense of theory and observation. Taking a holistic view of dark matter as a problem, an opportunity, and an example of science in action, The Elephant in the Universe is a vivid tale of scientists puzzling their way toward the true nature of the universe. |
![]() ![]() You may like...
God Or Science?: Is Science Denying God?
Antonino Del Popolo
Hardcover
R1,581
Discovery Miles 15 810
The Disordered Cosmos - A Journey Into…
Chanda Prescod-Weinstein
Hardcover
R723
Discovery Miles 7 230
A Brief History Of Time - From Big Bang…
Stephen Hawking
Paperback
![]()
|