![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Astronomy, space & time > Cosmology & the universe
The now recognized extensive existence of life on earth very shortly after the destructive bombardment of the earth's surface by early solar system debris has stimulated inquiry into possible exogenous sources of prebiotic molecules from space as well as intensified studies of the early earth's atmosphere. The chapters in this book cover the possible sources of prebiotic molecules and avenues by which life could have evolved, starting from the birth and evolution of the solar system. The relevance of the classic experiments by Stanley Miller on the formation of life's building blocks on an early earth is reexamined. The role of chemistry in space is covered by chapters on interstellar dust, and meteorites to which experimental as well as theoretical investigations have been directed. In various chapters the existence of amino acids as well as other prebiotic molecules in meteorites is clearly established and inferred for interstellar dust and comets. Theories of molecular synthesis in the solar nebula are considered. Extensive coverage is given to the physical conditions and to prebiotic systems on the early earth. Possible pathways to life on an early Mars and the possible messages to be obtained by space exploration are discussed. Questions of effects of clays and of chirality on early chemical evolution are discussed. Recent ideas on the RNA world as the precursor to life are reviewed. The open-endedness of the study of life's origins and the need to investigate whether the prebiotic building blocks formed in outer space or on the earth is emphasized. A good deal of the book is suitable to graduate students.
The Physics of the Early Universe is an edited and expanded version of the lectures given at a recent summer school of the same name. Its aim is to present an advanced multi-authored textbook that meets the needs of both postgraduate students and young researchers interested in, or already working on, problems in cosmology and general relativity, with emphasis on the early universe. A particularly strong feature of the present work is the constructive-critical approach to the present mainstream theories, the careful assessment of some alternative approaches, and the overall balance between theoretical and observational considerations. As such, this book will also benefit experienced scientists and nonspecialists from related areas of research.
The book is based on the author's PhD thesis, which deals with the concept of time in quantum gravity and its relevance for the physics of the early Universe. It presents a consistent and complete new relational formulation of quantum gravity (more specifically, of quantum mechanics models with diffeomorphism invariance), which is applied to potentially observable cosmological effects. The work provides answers to the following questions: How can the dynamics of quantum states of matter and geometry be defined in a diffeomorphism-invariant way? What is the relevant space of physical states and which operators act on it? How are the quantum states related to probabilities in the absence of a preferred time? The answers can provide a further part of the route to constructing a fundamental theory of quantum gravity. The book is well-suited to graduate students as well as professional researchers in the fields of general relativity and gravitation, cosmology, and quantum foundations.
Our view of the Galaxy has recently been undergoing an increasing divergence from the traditional standpoint. In this book, ten authors discuss in eight chapters how the conceptions of the Milky Way have moved in new directions. Starting with the inner parsec and the Centre of the Galaxy, the book gradually moves on to the bulge and its relation to the globular clusters and to the disk, of which the presence of a bar is argued. A new look on the HI distribution in the disk, a synthesis of molecular line surveys and the study of stellar populations are discussed in the last three chapters.
'This is a nicely produced book which should appeal to a wide readership.'The ObservatoryThis book is about the Dark Energy Survey, a cosmological experiment designed to investigate the physical nature of dark energy by measuring its effect on the expansion history of the universe and on the growth of large-scale structure. The survey saw first light in 2012, after a decade of planning, and completed observations in 2019. The collaboration designed and built a 570-megapixel camera and installed it on the four-metre Blanco telescope at the Cerro Tololo Inter-American Observatory in the Chilean Andes. The survey data yielded a three-dimensional map of over 300 million galaxies and a catalogue of thousands of supernovae. Analysis of the early data has confirmed remarkably accurately the model of cold dark matter and a cosmological constant. The survey has also offered new insights into galaxies, supernovae, stellar evolution, solar system objects and the nature of gravitational wave events.A project of this scale required the long-term commitment of hundreds of scientists from institutions all over the world. The chapters in the first three sections of the book were either written by these scientists or based on interviews with them. These chapters explain, for a non-specialist reader, the science analysis involved. They also describe how the project was conceived, and chronicle some of the many and diverse challenges involved in advancing our understanding of the universe. The final section is trans-disciplinary, including inputs from a philosopher, an anthropologist, visual artists and a poet. Scientific collaborations are human endeavours and the book aims to convey a sense of the wider context within which science comes about.This book is addressed to scientists, decision makers, social scientists and engineers, as well as to anyone with an interest in contemporary cosmology and astrophysics.Related Link(s)
Everything you ever wanted to know about the universe - and our place within it - in one mind-expanding and highly accessible book. ___ What happens inside black holes? Is dark matter real? Could we do anything to prevent being wiped out by an approaching asteroid? Will our explorations of our neighbouring planets reveal life or a new place to settle? What can observations of stars reveal about our origins - and our future? Professor Andrew Newsam draws on his vast expertise to show us what's going on beyond the limits of our planet, from our solar system to distant galaxies - and what this tells us about our own place in this vast expanse called 'the Universe'. From glowing nebulae to the sweeping majesty of the Milky Way, Everything You Ever Wanted to Know About the Universe will spark your curiosity and help you make sense of the amazing discoveries and fascinating mysteries of the cosmos. 'Unpatronizing, direct and comprehensible.' BBC Sky at Night Magazine
Throughout history, people have tried to construct 'theories of
everything': highly ambitious attempts to understand nature in its
totality. This account presents these theories in their historical
contexts, from little known hypotheses from the past to modern
developments such as the theory of superstrings, the anthropic
principle and ideas of many universes, and uses them to
problematize the limits of scientific knowledge. Do claims to
theories of everything belong to science at all? Which are the
epistemic standards on which an alleged scientific theory of the
universe - or the multiverse - is to be judged?
Our vast Universe is filled with an enormous amount of matter and energy, which are the source of large gravitational potentials affecting all physical phenomena. Because this fact about the size and contents of the Universe was not known when our fundamental theories of dynamics and relativity were completed by the 1920s, the current theories - based as they are in empty space - fail to incorporate cosmic gravity. Though the current theories are consistent with the majority of empirical facts, there are some crucial discrepancies, which demand a drastic shift to a cosmic gravitational paradigm for the theories of relativity and dynamics. The book is a detailed and widely accessible account of this paradigm, called Cosmic Relativity, supported by ample empirical evidence. It is established that all motional relativistic effects are cosmic gravitational effects. The new theory of Cosmic Relativity solves and answers all outstanding questions and puzzles about dynamics and relativity.
Take your seats for the greatest tour ever - one that encompasses the whole of the Universe. En route, we stop off to gaze at 100 amazing sights - from asteroids to zodiacal dust and from orbit around the Earth to beyond the most distant galaxies. We start right here on Earth, and your tour guides are cosmic voyagers Patrick Moore, Brian May and Chris Lintott: Patrick is a lifelong lunar specialist; Brian is the leading authority on dust in our solar system, and Chris researches the formation of stars and galaxies.
This book provides a first-hand account of modern cosmology, written by three celebrated astronomers renowned for their excellence in both research and teaching. The central theme of the book, the deep Universe, is approached in three truly complementary ways: as a coherent and smooth theory embracing the evolution of the Universe from its original radiations emerging from the hot Big Bang to the present structures of matter; as a meandering, rough road paved by our observations of stars, galaxies, and clusters; and in terms of how these approaches have been gradually developed and intertwined in the historical process that led to the modern science of cosmology.
Einstein's general theory of relativity is introduced in this
advanced undergraduate and beginning graduate level textbook.
Topics include special relativity, in the formalism of Minkowski's
four-dimensional space-time, the principle of equivalence,
Riemannian geometry and tensor analysis, Einstein field equation,
as well as many modern cosmological subjects, from primordial
inflation and cosmic microwave anisotropy to the dark energy that
propels an accelerating universe.
This volume contains a number of essays by experts in areas of theoretical physics and astrophysics including cosmology, classical and quantum gravity, string theory and relativistic astrophysics. It will provide the reader with excellent reviews of current research in these frontier areas. Several of the essays emphasise alternative views of the Universe by leading astronomers and physicists who are known for their pioneering contributions. The volume is dedicated to Professor Jayant Narlikar, who has concerned himself with fundamental issues in cosmology and gravitation theory over a long and distinguished research career.
The observation, in 1919 by A.S. Eddington and collaborators, of the gra- tational de?ection of light by the Sun proved one of the many predictions of Einstein's Theory of General Relativity: The Sun was the ?rst example of a gravitational lens. In 1936, Albert Einstein published an article in which he suggested - ing stars as gravitational lenses. A year later, Fritz Zwicky pointed out that galaxies would act as lenses much more likely than stars, and also gave a list of possible applications, as a means to determine the dark matter content of galaxies and clusters of galaxies. It was only in 1979 that the ?rst example of an extragalactic gravitational lens was provided by the observation of the distant quasar QSO 0957+0561, by D. Walsh, R.F. Carswell, and R.J. Weymann. A few years later, the ?rst lens showing images in the form of arcs was detected. The theory, observations, and applications of gravitational lensing cons- tute one of the most rapidly growing branches of astrophysics. The gravi- tional de?ection of light generated by mass concentrations along a light path producesmagni?cation,multiplicity,anddistortionofimages,anddelaysp- ton propagation from one line of sight relative to another. The huge amount of scienti?c work produced over the last decade on gravitational lensing has clearly revealed its already substantial and wide impact, and its potential for future astrophysical applications.
The last decade of this century has seen a renewed interest in the dynamics and physics of the small bodies of the Solar System, Asteroids, Comets and Meteors. New observational evidences such as the discovery of the Edgeworth-Kuiper belt, refined numerical tools such as the symplectic integrators, analytical tools such as semi-numerical perturbation algorithms and in general a better understanding of the dynamics of Hamiltonian systems, all these factors have converged to make possible and worthwhile the study, over very long time spans, of these "minor" objects. Also the public, the media and even some political assell}blies have become aware that these "minor" objects of our planetary environnement could become deadly weapons. Apparently they did have a role in Earth history and a role more ominous than "predicting" defeat (or victory, why not?) to batches of credulous rulers. Remembering what may have happened to the dinosaurs but keeping all the discretion necessary to avoid creating irrational scares, it may not be unwise or irrelevant to improve our knowledge of the physics and dynamics of these objects and to study in particular their interactions with our planet.
The modern Persian word for cosmology is "Keyhan-shenakht," which is also the title of a Persian book written more than 800 years ago. The same term can also be found in Old Persian. In spite of this old tradition, modern cosmology is a new omer within the scientific disciplines in Iran. The cosmology community' is small and not yet well established. Given the spectacular recent advances in observational and theoretical cosmology, the large amount of new observational data which will become available in the near future, and the rapid expansion of the international cosmology community, it was realized that Iran should play a more active role in the exciting human endeavour which cosmology constitutes. This was the main motivation to establish a School on Cosmology in Iran. The plan is to hold a cosmology school every three years somewhere in Iran. The focus of this First School on Cosmology was chosen to be structure formation, a rapidly evolving cornerstone of modern cosmology. The topics of the school were selected in order to give both a broad overview of the current status of cosmological structure formation, and an in-depth dis cussion of the key issues theory of cosmological perturbations and analysis of cosmic microwave anisotropies. The lectures by Blanchard and Sarkar give an overview of homogeneous cosmological models and standard big bang cosmology. In his contribution, Padmanabhan presents a comprehen sive discussion of the growth of cosmological perturbations."
A Brief History of Time for the 21st Century At the heart of our galaxy lies a monster so deadly, not even light can escape its grasp. Its secrets lie waiting to be discovered. It's time to explore our universe's most mysterious inhabitants Black Holes At the heart of the Milky Way lies a supermassive black hole 4 million times more massive than our Sun. A place where space and time are so warped that light is trapped if it ventures within 12 million km. According to Einstein, inside lies the end of time. According to 21st-century physics, the reality may be far more bizarre. Black holes lie where the most massive stars used to shine and at the edge of our current understanding. They are naturally occurring objects, the inevitable creations of gravity when too much matter collapses into not enough space. And yet, although the laws of nature predict them, they fail fully to describe them. Black holes are places in space and time where the laws of gravity, quantum physics and thermodynamics collide. Originally thought to be so intellectually troubling that they simply could not exist, it is only in the past few years that we have begun to glimpse a new synthesis; a deep connection between gravity and quantum information theory that describes a holographic universe in which space and time emerge from a network of quantum bits, and wormholes span the void. In this groundbreaking book, Professor Brian Cox and Professor Jeff Forshaw take you to the edge of our understanding of black holes; a scientific journey to the research frontier spanning a century of physics, from Einstein to Hawking and beyond, that ends with the startling conclusion that our world may operate like a giant quantum computer.
General Relativity has passed all experimental and observational tests to model the motion of isolated bodies with strong gravitational fields, though the mathematical and numerical study of these motions is still in its infancy. It is believed that General Relativity models our cosmos, with a manifold of dimensions possibly greater than four and debatable topology opening a vast field of investigation for mathematicians and physicists alike. Remarkable conjectures have been proposed, many results have been obtained but many fundamental questions remain open. In this monograph, aimed at researchers in mathematics and physics, the author overviews the basic ideas in General Relativity, introduces the necessary mathematics and discusses some of the key open questions in the field.
* Most up-to-date overview of planetary science, generously illustrated * Accessible prose with a unique perspective by professional astronomers active in planetary science research with extensive teaching experience and expertise in history of astronomy and classical astronomy * Detailed appendices that supplement the text including past, current, and future space missions
How would Saturn’s rings look from a spaceship sailing just above them? If you were falling into a black hole, what’s the last thing you’d see before your spaghettification? What would it be like to visit the faraway places we currently experience only through high-powered telescopes and robotic emissaries? Faster-than-light travel may never be invented, but we can still take the scenic route through the universe with renowned astronomer and science communicator Philip Plait. On this lively, immersive adventure through the cosmos, Plait draws ingeniously on the latest scientific research to transport readers to ten spectacular sites, from our own familiar Moon to the outer reaches of our solar system and far beyond. Whether strolling through a dust storm under Mars’ butterscotch sky, witnessing the birth of a star or getting dizzy in a technicolour nebula, Plait is an illuminating, entertaining guide to the most otherworldly views in our universe.
The aim of this book is to give graduate students an overview of quantum gravity but it also covers related topics from astrophysics. Some well-written contributions can serve as an introduction into basic conceptual concepts like time in quantum gravity or the emergence of a classical world from quantum cosmology. This makes the volume attractive to philosophers of science, too. Other topics are black holes, gravitational waves and non-commutative extensions of physical theories.
In each generation, scientists must redefine their fields: abstracting, simplifying and distilling the previous standard topics to make room for new advances and methods. Sethna's book takes this step for statistical mechanics--a field rooted in physics and chemistry whose ideas and methods< br> are now central to information theory, complexity, and modern biology. Aimed at advanced undergraduates and early graduate students in all of these fields, Sethna limits his main presentation to the topics that future mathematicians and biologists, as well as physicists and chemists, will find< br> fascinating and central to their work. The amazing breadth of the field is reflected in the author's large supply of carefully crafted exercises, each an introduction to a whole field of study: everything from chaos through information theory to life at the end of the universe. |
![]() ![]() You may like...
A Citizen's Disclosure on UFOs and Eti…
Terence M Tibando
Hardcover
God Or Science?: Is Science Denying God?
Antonino Del Popolo
Hardcover
R1,601
Discovery Miles 16 010
Starry Messenger - Cosmic Perspectives…
Neil De Grasse Tyson
Paperback
The Disordered Cosmos - A Journey Into…
Chanda Prescod-Weinstein
Hardcover
A Brief History Of Time - From Big Bang…
Stephen Hawking
Paperback
![]()
|