![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time > Cosmology & the universe
A number of authors have noted that if some physical parameters were slightly changed, the universe could no longer support life, as we know it. This implies that life depends sensitively on the physics of our universe. Does this "fine-tuning" of the universe suggest that a creator god intentionally calibrated the initial conditions of the universe such that life on earth and the evolution of humanity would eventually emerge? In his in-depth and highly accessible discussion of this fascinating and controversial topic, the author looks at the evidence and comes to the opposite conclusion. He finds that the observations of science and our naked senses not only show no evidence for God, they provide evidence beyond a reasonable doubt that God does not exist.
A Nobel Prize-winning physicist explains what happened at the very beginning of the universe, and how we know, in this popular science classic. Our universe has been growing for nearly 14 billion years. But almost everything about it, from the elements that forged stars, planets, and lifeforms, to the fundamental forces of physics, can be traced back to what happened in just the first three minutes of its life. In this book, Nobel Laureate Steven Weinberg describes in wonderful detail what happened in these first three minutes. It is an exhilarating journey that begins with the Planck Epoch - the earliest period of time in the history of the universe - and goes through Einstein's Theory of Relativity, the Hubble Red Shift, and the detection of the Cosmic Microwave Background. These incredible discoveries all form the foundation for what we now understand as the "standard model" of the origin of the universe. The First Three Minutes examines not only what this model looks like, but also tells the exciting story of the bold thinkers who put it together. Clearly and accessibly written, The First Three Minutes is a modern-day classic, an unsurpassed explanation of where it is we really come from.
Beginning with the famous Olber's paradox, a number of cosmological paradoxes, such as the missing mass, dark energy, and the baryon-to-photon ratio, have been and are today the subject of many scientific controversies. The Big Bang model, anticipated by Lemaitre in 1927 and reformulated twenty years later by Gamow, Alpher and Herman, is one of the most spectacular successes in the entire history of physics. It remains today surrounded by considerable theoretical speculation without sufficient observational support. This book discusses such paradoxes in depth with physical and logical content and historical perspective, and has not much technical content in order to serve a wide audience.
Beginning with the famous Olber's paradox, a number of cosmological paradoxes, such as the missing mass, dark energy, and the baryon-to-photon ratio, have been and are today the subject of many scientific controversies. The Big Bang model, anticipated by Lemaitre in 1927 and reformulated twenty years later by Gamow, Alpher and Herman, is one of the most spectacular successes in the entire history of physics. It remains today surrounded by considerable theoretical speculation without sufficient observational support. This book discusses such paradoxes in depth with physical and logical content and historical perspective, and has not much technical content in order to serve a wide audience.
This book is written from the viewpoint of a deep connection between cosmology and particle physics. It presents the results and ideas on both the homogeneous and isotropic Universe at the hot stage of its evolution and in later stages. The main chapters describe in a systematic and pedagogical way established facts and concepts on the early and the present Universe. The comprehensive treatment, hence, serves as a modern introduction to this rapidly developing field of science. To help in reading the chapters without having to constantly consult other texts, essential materials from General Relativity and the theory of elementary particles are collected in the appendices. Various hypotheses dealing with unsolved problems of cosmology, and often alternative to each other, are discussed at a more advanced level. These concern dark matter, dark energy, matter-antimatter asymmetry, etc.
Primordial Cosmology deals with one of the most puzzling and fascinating topics debated in modern physics - the nature of the Big Bang singularity. The authors provide a self-consistent and complete treatment of the very early Universe dynamics, passing through a concise discussion of the Standard Cosmological Model, a precise characterization of the role played by the theory of inflation, up to a detailed analysis of the anisotropic and inhomogeneous cosmological models. The most peculiar feature of this book is its uniqueness in treating advanced topics of quantum cosmology with a well-traced link to more canonical and pedagogical notions of fundamental cosmology.This book traces clearly the backward temporal evolution of the Universe, starting with the Robertson-Walker geometry and ending with the recent results of loop quantum cosmology in view of the Big Bounce. The reader is accompanied in this journey by an initial technical presentation which, thanks to the fundamental tools given earlier in the book, never seems heavy or obscure.
This extensive thesis work covers several topics, including intensity and polarization, focusing on a new polarization bias reduction method. Vidal studied data from the WMAP satellite, which is low signal-to-noise and as such has to be corrected for polarization bias. He presents a new method for correcting the data, based on knowledge of the underlying angle of polarization. Using this novel method, he sets upper limits for the polarization fraction of regions known to emit significant amounts of spinning dust emissions. He also studies the large-scale loops and filaments that dominate the synchrotron sky. The dominant features are investigated, including identification of several new features. For the North Polar Spur, a model of an expanding shell in the vicinity of the Sun is tested, which appears to fit the data. Implications for CMB polarization surveys are also discussed. In addition, Vidal presents interferometric observations of the dark cloud LDN 1780 at 31 GHz and shows that the spinning dust hypothesis can explain the radio properties observed.
Is the universe designed for life? Physicists have discovered that
many seemingly unconnected phenomena, which took place millions of
years apart, played a crucial role in the development of life on
Earth. Does such evidence reveal a purpose behind the order of the
universe?
This book discusses the state of the art of the basic theoretical and observational topics related to black hole astrophysics. It covers all the main topics in this wide field, from the theory of accretion disks and formation mechanisms of jet and outflows, to their observed electromagnetic spectrum, and attempts to measure the spin of these objects. Black holes are one of the most fascinating predictions of general relativity and are currently a very hot topic in both physics and astrophysics. In the last five years there have been significant advances in our understanding of these systems, and in the next five years it should become possible to use them to test fundamental physics, in particular to predict the general relativity in the strong field regime. The book is both a reference work for researchers and a textbook for graduate students.
Due to its specific chemical and physical properties, water is essential for life on Earth. And it is assumed that this would be the case for extraterrestrial life as well. Therefore it is important to investigate where water can be found in the Universe. Although there are places that are completely dry, places where the last rainfall happened probably several 100 million years ago, surprisingly this substance is quite omnipresent. In the outer solar system the large satellites of Jupiter and Saturn are covered by a thick layer of ice that could be hiding a liquid ocean below. This of course brings up the question of whether the recently detected extrasolar planets could have some water on their surfaces and how we can detect this. Water molecules are also found in interstellar gas and dust clouds. This book begins with an introductory chapter reviewing the physical and chemical properties of water. Then it illuminates the apparent connection between water and life. This is followed by chapters dealing with our current knowledge of water in the solar system, followed by a discussion concerning the potential presence and possible detection of water on exoplanets. The signature of water in interstellar space and stars are reviewed before the origin of water in the Universe is finally discussed. The book ends with an appendix on detection methods, satellite missions and astrophysical concepts touched upon in the main parts of the book. The search for water in the Universe is related to the search for extraterrestrial life and is of fundamental importance for astrophysics, astrobiology and other related topics. This book therefore addresses students and researchers in these fields.
Everyone knows that there are things no one can see, for example, the air you're breathing or a black hole, to be more exotic. But not everyone knows that what we can see makes up only 5 percent of the Universe. The rest is totally invisible to us. The invisible stuff comes in two varieties--dark matter and dark energy. One holds the Universe together while the other tears it apart. What these forces really are has been a mystery for as long as anyone has suspected they were there, but the latest discoveries of experimental physics have brought us closer to that knowledge. Particle physicist Dan Hooper takes his readers, with wit, grace, and a keen knack for explaining the toughest ideas science has to offer, on a quest few would ever have expected: to discover what makes up our dark cosmos.
Why should there be anything at all? Why, in particular, should a material world exist? Bede Rundle advances clear, non-technical answers to these perplexing questions. If, as the theist maintains, God is a being who cannot but exist, his existence explains why there is something rather than nothing. However, this can also be explained on the basis of a weaker claim. Not that there is some particular being that has to be, but simply that there has to be something or other. Rundle proffers arguments for thinking that that is indeed how the question is to be put to rest. Traditionally, the existence of the physical universe is held to depend on God, but the theist faces a major difficulty in making clear how a being outside space and time, as God is customarily conceived to be, could stand in an intelligible relation to the world, whether as its creator or as the author of events within it. Rundle argues that a creator of physical reality is not required, since there is no alternative to its existence. There has to be something, and a physical universe is the only real possibility. He supports this claim by eliminating rival contenders; he dismisses the supernatural, and argues that, while other forms of being, notably the abstract and the mental, are not reducible to the physical, they presuppose its existence. The question whether ultimate explanations can ever be given is forever in the background, and the book concludes with an investigation of this issue and of the possibility that the universe could have existed for an infinite time. Other topics discussed include causality, space, verifiability, essence, existence, necessity, spirit, fine tuning, and laws of Nature. Why There Is Something Rather Than Nothing offers an explanation of fundamental facts of existence in purely philosophical terms, without appeal either to theology or cosmology. It will provoke and intrigue anyone who wonders about these questions.
Cosmology and theology share a long held relationship with one another, explaining as they do the constitution of the World and the interaction of forces. The author explores the history of this relationship, from ancient pre-scientific and theological, explanations through to contemporary science and philosophy. In this history, a particular problem is highlighted by the author: the prevalence of dualism; from Aristotelian philosophy to modern mechanistic conceptions, many of these accounts presume a sharp, absolute dichotomy between matter and spirit, and the material world and the divine. Increasingly, dualistic conceptions are called into question by contemporary science, theology, and philosophy. The author argues that a particular trajectory stemming from Greek Heraclitian and Platonic philosophy to non-orthodox and early Christian theologies provides a fruitful resource for contemporary discussions. This is the Logos theology and its attendant language of light. The author brings this tradition into dialogue with contemporary science and theology to construct an integrative account.
The universe has many secrets. It may hide additional dimensions of space other than the familier three we recognize. There might even be another universe adjacent to ours, invisible and unattainable . . . for now. Warped Passages is a brilliantly readable and altogether exhilarating journey that tracks the arc of discovery from early twentieth-century physics to the razor's edge of modern scientific theory. One of the world's leading theoretical physicists, Lisa Randall provides astonishing scientific possibilities that, until recently, were restricted to the realm of science fiction. Unraveling the twisted threads of the most current debates on relativity, quantum mechanics, and gravity, she explores some of the most fundamental questions posed by Nature—taking us into the warped, hidden dimensions underpinning the universe we live in, demystifying the science of the myriad worlds that may exist just beyond our own.
"A Brief History of Time," published in 1988, was a landmark volume
in science writing and in world-wide acclaim and popularity, with
more than 9 million copies in print globally. The original edition
was on the cutting edge of what was then known about the origins
and nature of the universe. But the ensuing years have seen
extraordinary advances in the technology of observing both the
micro- and the macrocosmic world--observations that have confirmed
many of Hawking's theoretical predictions in the first edition of
his book.
This is the largest and most comprehensive atlas of the universe ever created for amateur astronomers. With finder charts of unprecedented detail, in both normal and mirror-image views, and an extensive list of 14,000 objects, it provides a detailed observing guide for almost any practical amateur astronomer, up to the most advanced. Spanning some 3,000 pages, this is a project that is possible only on CD-ROM. The CD-R pages are extensively indexed and referenced for quick location of objects. The accompanying book gives an introduction to the Atlas, showcases the maps, describes the CD-R content and organization, and includes various appendices.
Based on material delivered at several summer schools, this book is the first comprehensive textbook at the graduate level encompassing all aspects associated with the emerging field of astrobiology. Volume II gathers another set of extensive lectures covering
topics so diverse as the formation and the distribution of elements
in the universe, the concept of habitability from both the
planetologists' and the biologists' point of view and artificial
life. The contributions are held together by the common goal to
understand better the origin of life, its evolution and possible
existence outside the Earth's realm.
The goal of the Daniel Chalonge School on Astrofundamental Physics is to contribute to a theory of the universe (and particularly of the early universe) up to the marks, and at the scientific height of, the unprecedented accuracy, existent and expected, in the observational data. The impressive development of modern cosmology during the last decades is to a large extent due to its unification with elementary particle physics and quantum field theory. The cross-section between these fields has been increasing setting up Astrofundamental Physics. The early universe is an exceptional (theoretical and experimental) laboratory in this new discipline. This NATO Advanced Study Institute provided an up dated understanding, from a fundamental physics and deep point of view, of the progress and key issues in the early universe and the cosmic microwave background: theory and observations. The genuine interplay with large scale structure formation and dark matter problem were discussed. The central focus was placed on the cosmic microwave background. Emphasis was given to the precise inter-relation between fundamental physics and cosmology in these problems, both at the theoretical and experimental/observational levels, within a deep and well defined programme which provided in addition, a careful interdisciplinarity. Special sessions were devoted to high energy cosmic rays, neutrinos in astrophysics, and high energy astrophysics. Deep understanding, clarification, synthesis, careful interdisciplinarity within a fundamental physics framework, were the main goals of the course.
This thesis explores advanced Bayesian statistical methods for extracting key information for cosmological model selection, parameter inference and forecasting from astrophysical observations. Bayesian model selection provides a measure of how good models in a set are relative to each other - but what if the best model is missing and not included in the set? Bayesian Doubt is an approach which addresses this problem and seeks to deliver an absolute rather than a relative measure of how good a model is. Supernovae type Ia were the first astrophysical observations to indicate the late time acceleration of the Universe - this work presents a detailed Bayesian Hierarchical Model to infer the cosmological parameters (in particular dark energy) from observations of these supernovae type Ia.
Systematically explores the early origins and basic definition of life. Investigates the major theories of the origins of life in light of modern research with the aim of distinguishing between the necessary and the optional and between deterministic and random influences in the emergence of what we call life. Treats and views life as a cosmic phenomenon whose emergence and driving force should be viewed independently from its Earth-bound natural history. Synthesizes all the fundamental life-related developments in a comprehensive scenario, and makes the argument that understanding life in its broadest context requires a material-independent perspective that identifies its essential fingerprints
The amount of cosmological data has dramatically increased in
the past decades due to an unprecedented development of telescopes,
detectors and satellites. Efficiently handling and analysing new
data of the order of terabytes per day requires not only computer
power to be processed but also the development of sophisticated
algorithms and pipelines.
Cosmology in Scalar-Tensor Gravity covers all aspects of
cosmology in scalar-tensor theories of gravity. Considerable
progress has been made in this exciting area of physics and this
book is the first to provide a critical overview of the research.
Among the topics treated are: |
You may like...
The Disordered Cosmos - A Journey Into…
Chanda Prescod-Weinstein
Hardcover
R548
Discovery Miles 5 480
HowExpert Guide to Astronomy - 101…
Howexpert, Ryan Thomas Kirby
Hardcover
R737
Discovery Miles 7 370
|