![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Astronomy, space & time > Cosmology & the universe
With the Hubble Space Telepscope's next servicing mission still uncertain, identifying the most crucial science to be performed by this superb telescope has become of paramount importance. With this goal in mind, this book presents a review of some of the most important open questions in astronomy today. World experts examine topics ranging from extrasolar planets and star formation to supermassive black holes and the reionization of the universe. Special emphasis is placed on what astronomical observations should be carried out during the next few years to enable breakthroughs in our understanding of a complex and dynamic universe. In particular, the reviewers attempt to identify those topics to which the Hubble Space Telescope can uniquely contribute. The special emphasis on future research makes this book an essential resource for both professional researchers and graduate students in astronomy and astrophysics.
Inflationary cosmology has been developed over the last twenty years to remedy serious shortcomings in the standard hot big bang model of the universe. This textbook, first published in 2005, explains the basis of modern cosmology and shows where the theoretical results come from. The book is divided into two parts; the first deals with the homogeneous and isotropic model of the Universe, the second part discusses how inhomogeneities can explain its structure. Established material such as the inflation and quantum cosmological perturbation are presented in great detail, however the reader is brought to the frontiers of current cosmological research by the discussion of more speculative ideas. An ideal textbook for both advanced students of physics and astrophysics, all of the necessary background material is included in every chapter and no prior knowledge of general relativity and quantum field theory is assumed.
Der Grundkurs Theoretische Physik in 4 in sich abgeschlossenen BAnden basiert auf langjAhrig erprobten Vorlesungen, in denen die Aufbereitung der theoretisch-physikalischen Grundlagen in enger Form mit dem entsprechenden Stoff aus der Mathematik verknA1/4pft wird. 1 Theoretische Mechanik 2 Elektrodynamik und RelativitAtstheorie 3 Quantenmechanik 4 Thermodynamik und Statistische Physik Der zweite Band zur Elektrodynamik und RelativitAtstheorie erarbeitet schrittweise die Grundlagen der Physik, unterstA1/4tzt von einer beiliegenden CD-ROM mit einem auf die Belange der Studierenden der Physik zugeschnittenen Mathematik-Teil sowie einer interaktiven Aufgabensammlung mit Animationen.
The astronomical community is wrongly interpreting cosmological data by using the standard Big Bang Model. In this highly controversial volume, three distinguished cosmologists argue this premise with persuasion and conviction. Starting with the beginnings of modern cosmology, they conduct a deep and wide review of the observations made from 1945 to the present, explaining what they regard as the defects and inconsistencies that exist within the interpretation of cosmological data. This is followed by an extensive presentation of the authors' own alternative view of the status of observations and how they should be explained. Along the way, the book touches on the most fundamental questions, including the origin, age, structure, and properties of the Universe. Writing from the heart, with passion and punch, Hoyle, Burbidge, and Narlikar, make a powerful case for viewing the universe in a different light, which will be of great interest to graduate students, researchers, and professionals in astronomy, cosmology, and physics.
Professor Murray Gell-Mann is one of the most influential and brilliant scientists of the twentieth century. His work on symmetries, including the invention of the 'quark', in the 1950s and early 1960s has provided a foundation for much of modern particle physics and was recognised by the award of the Nobel Prize for Physics in 1969. This book is a collection of research articles especially written by eminent scientists to celebrate Gell-Mann's 60th birthday, in September 1989. The main body of contributions are concerned with theoretical particle physics and its applications to cosmology.
This volume provides a comprehensive and coherent introduction to modern quantum cosmology - the study of the universe as a whole according to the laws of quantum mechanics. In particular, it presents a useful survey of the many profound consequences of supersymmetry (supergravity) in quantum cosmology. After a general introduction to quantum cosmology, the reader is led through Hamiltonian supergravity and canonical quantization and quantum amplitudes through to models of supersymmetric mini superspace and quantum wormholes. The book is rounded off with a look at exciting further developments, including the possible finiteness of supergravity. Ample introductory material is included, ensuring this topical volume is well suited as a graduate text. Researchers in theoretical and mathematical physics, applied maths and cosmology will also find it of immediate interest.
A reconciliation of theories of the very small and the very large scale is one of the most important single issues in physics today. Many people today are unaware that back in the 1930s, Sir Arthur Eddington, the celebrated astrophysicist, made great strides towards his own 'theory of everything'. In 1936 and 1946 Eddington's last two books were published. Unlike his earlier lucid and authoritative works, these are strangely tentative and obscure - as if he were nervous of the significant advances he might be making. This volume examines how Eddington came to write these uncharacteristic books - in terms of the physics and history of the day - and what value they have to modern physics. The results is an illuminating description of the development of theoretical physics in the first half of the twentieth century from a unique point of view: how it affected Eddington's thought. This will provide fascinating reading for scholars in the philosophy of science, theoretical physics, applied mathematics and the history of science.
This authoritative volume shows how modern dynamical systems theory can help us in understanding the evolution of cosmological models. It also compares this approach with Hamiltonian methods and numerical studies. A major part of the book deals with the spatially homogeneous (Bianchi) models and their isotropic subclass, the Friedmann-Lemaitre models, but certain classes of inhomogeneous models (for example, 'silent universes') are also examined. The analysis leads to an understanding of how special (high symmetry) models determine the evolution of more general families of models; and how these families relate to real cosmological observations. This is the first book to relate modern dynamical systems theory to both cosmological models and cosmological observations. It provides an invaluable reference for graduate students and researchers in relativity, cosmology and dynamical systems theory.
Our Universe is amazing. This is its story, told in simple language. The story tells how the Universe came to be what it is today. It starts with the Big Bang and describes how stars, black holes, and our solar system developed. It explores the evolution of life on Earth and investigates the possibility of extra-terrestrial life. It peers into the future and wonders about the Universe's likely old age and death, or whatever else may be its end. The challenge the book takes up is to explain all of this, including some of the astonishing concepts we have in science, such as Einstein's theories of Relativity and Quantum Mechanics, using virtually no mathematics and without dumbing-down. All are described narratively and explained using examples and anecdotes. The book is written for young people with a thirst for learning about the science of space, as well as for 'grown-ups' who want a better understanding of this fascinating subject.
Clusters of galaxies are the largest and most massive collapsed systems in the Universe, and as such they are valuable probes of cosmological structure and galaxy evolution. The advent of extensive galaxy surveys, large ground-based facilities, space-based missions such as HST, Chandra and XMM-Newton and detailed numerical simulations makes now a particularly exciting time to be involved in this field. The review papers in this volume span the full range of current research in this area, including theoretical expectations for the growth of structure, survey techniques to identify clusters, metal production and the intracluster medium, galaxy evolution in the cluster environment and group-cluster connections. With contributions from leading authorities in the field, this volume is appropriate both as an introduction to this topic for physics and astronomy graduate students, and as a reference source for professional research astronomers.
The chemical composition of the Universe has evolved over billions of years. A host of astrophysical processes and observations must be understood in order to explain why celestial objects have the chemical compositions observed. Originally published in 2004, this book contains the lectures delivered at the XIII Canary Islands Winter School of Astrophysics, which was dedicated to reviewing current knowledge about the origin and evolution of the chemical elements in the Universe. Written by seven prestigious astrophysics researchers, it covers cosmological and stellar nucleosynthesis, abundance determinations in stars and ionised nebulae, chemical composition of nearby and distant galaxies, and models of chemical evolution of galaxies and intracluster medium. This is a timely review of developments in cosmochemistry over the last decade.
1919 hat das Preussische Ministerium fur Wissenschaft, Kunst und Volksbildung die Akte "Einsteins Relativitatstheorie" angelegt. Der Autor, selbst Wissenschaftshistoriker, hat sie 1961 gefunden und zusammen mit anderen inzwischen identifizierten "Einstein"-Akten aus deutschen Archiven als Quellmaterial fur dieses faszinierende Buch gewahlt. Eingeteilt in drei Abschnitte: "Im Kaiserreich"-"In der Weimarer Republik"-"Das dritte Reich" zeichnet das Buch das Einsteinbild nach, zeigt auf, wie der Wissenschaftler immer starker durch die Ereignisse dieser turbulenten Jahre zu einer politischen Figur wurde und tragt Neues zum besseren Verstehen fur Einsteins rigorosen Bruch mit Deutschland bei. Damit fullt der Autor eine wichtige Lucke in der Einsteinliteratur. In der Neuauflage kommt noch ein Abschnitt hinzu, in dem der Autor bisher unbekanntes Material zu den FBI- und CIC-Berichten uber Einsteins angebliche Kontakte zur KPD und Komintern vorlegt. Des weiteren wird Einsteins Mitarbeit in der Volkerbundkommission erstmals in Tiefe behandelt."
Based on lectures given in honor of Stephen Hawking's 60th birthday, this book comprises contributions from the world's leading theoretical physicists. Popular lectures progress to a critical evaluation of more advanced subjects in modern cosmology and theoretical physics. Topics covered include the origin of the universe, warped spacetime, cosmological singularities, quantum gravity, black holes, string theory, quantum cosmology and inflation. The volume provides a fascinating overview of the variety of subjects to which Stephen Hawking has contributed.
This open access volume focuses on the cultural background of the pivotal transformations of scientific knowledge in the early modern period. It investigates the rich edition history of Johannes de Sacrobosco's Tractatus de sphaera, by far the most widely disseminated textbook on geocentric cosmology, from the unique standpoint of the many printers, publishers, and booksellers who steered this text from manuscript to print culture, and in doing so transformed it into an established platform of scientific learning. The corpus, constituted of 359 different editions featuring Sacrobosco's treatise on cosmology and astronomy printed between 1472 and 1650, represents the scientific European shared knowledge concerned with the cosmological worldview of the early modern period until far after the publication of Copernicus' De revolutionibus orbium coelestium in 1543. The contributions to this volume show how the academic book trade influenced the process of homogenization of scientific knowledge. They also describe the material infrastructure through which such knowledge was disseminated, and thus define the premises for the foundation of modern scientific communities.
This timely book is suitable for the general reader wishing to find answers to some of the intriguing questions now being asked about black holes. Although once recognized as the most destructive force in nature, following a cascade of astonishing discoveries, the opinion of supermassive black holes has undergone a dramatic shift. Astronomers are discovering that these objects may have been critical to the formation of structure in the early universe, spawning bursts of star formation, planets, and even life itself. Fulvio Melia is Associate Head of Physics and Professor of Astronomy at the University of Arizona. He is author of Electrodynamics (University of Chicago, 2001), and a forthcoming title, The Black Hole at the Center of Our Galaxy (Princeton).
Dieses Buch ist bis heute eine der popularsten Darstellungen der Relativitatstheorie geblieben. In der vorliegenden Version haben J. Ehlers und M. Poessel vom Max-Planck-Institut fur Gravitationsphysik (Albert-Einstein-Institut) in Golm/Potsdam den Bornschen Text kommentiert und einen den anschaulichen, aber prazisen Stil Borns wahrendes, umfangreiches Erganzungskapitel hinzugefugt, das die sturmische Entwicklung der Relativiatatstheorie bis hin zu unseren Tagen nachzeichnet. Eingegangen wird auf Gravitationswellen und Schwarze Loecher, auf neuere Entwicklungen der Kosmologie, auf Ansatze zu einer Theorie der Quantengravitation und auf die zahlreichen raffinierten Experimente, welche die Gultigkeit der Einsteinschen Theorie mit immer groesserer Genauigkeit bestatigt haben. Damit bleibt dieses Buch nach wie vor einer der unmittelbarsten Zugange zur Relativitatstheorie fur alle die sich fur eine uber das rein popularwissenschaftliche hinausgehende Einfuhrung interessieren.
In Masks of the Universe, Edward Harrison brings together fundamental scientific, philosophical and religious issues in cosmology and raises thought provoking questions. Philosophical issues dominated cosmology in the ancient world. Theological issues ranked foremost in the Middle Ages; astronomy and the physical sciences have taken over in more recent times. Yet every attempt to grasp the true nature of the universe creates a new "mask," People have always pitied the universes of their ancestors, believing that their generation has at last discovered the "real" universe. Do we now stand at the threshold of knowing everything, or have we created yet another "mask," doomed to fade like those preceding ours? Edward Harrison is Adjunct Professor of Astronomy, Steward Observatory, University of Arizona, and Emeritus Professor of Physics and Astronomy, University of Massachusetts, Amherst. He worked as a scientist for the Atomic Energy Research Establishment and the Rutherford High Energy Laboratory in England until 1966 when he became a Five College professor at the University of Massachusetts and taught at Amherst, Hampshire, Mount Holyoke, and Smith College. He is the author of numerous books, including Cosmology: the Science of the Universe (Cambridge, 2001)
What is 'nothing'? What remains when you take all the matter away? Can empty space - a void - exist? This Very Short Introduction explores the science and the history of the elusive void: from Aristotle who insisted that the vacuum was impossible, via the theories of Newton and Einstein, to our very latest discoveries and why they can tell us extraordinary things about the cosmos. Frank Close tells the story of how scientists have explored the elusive void, and the rich discoveries that they have made there. He takes the reader on a lively and accessible history through ancient ideas and cultural superstitions to the frontiers of current research. He describes how scientists discovered that the vacuum is filled with fields; how Newton, Mach, and Einstein grappled with the nature of space and time; and how the mysterious 'aether' that was long ago supposed to permeate the void may now be making a comeback with the latest research into the 'Higgs field'. We now know that the vacuum is far from being empty - it seethes with virtual particles and antiparticles that erupt spontaneously into being, and it also may contain hidden dimensions that we were previously unaware of. These new discoveries may provide answers to some of cosmology's most fundamental questions: what lies outside the universe, and, if there was once nothing, then how did the universe begin? ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
This timely volume provides comprehensive coverage of all aspects of cosmology and extragalactic astronomy at an advanced level. Beginning with an overview of the key observational results and necessary terminology, it covers important topics: the theory of galactic structure and galactic dynamics, structure formation, cosmic microwave background radiation, formation of luminous galaxies in the universe, intergalactic medium and active galactic nuclei. This self-contained text has a modular structure, and contains over one hundred worked exercises. It can be used alone, or in conjunction with the previous two accompanying volumes (Volume I: Astrophysical Processes, and Volume II: Stars and Stellar Systems).
James Lidsey deftly steers us along a journey back in time to the very origin of the universe. We are introduced to the fascinating ideas scientists are currently developing to explain what happened in the first billion, billion, billion, billionth of a second--the 'inflationary' epoch. Along the way Lidsey reviews the latest ideas on superstrings, parallel universes, and the ultimate fate of our universe. Lucid analogies, clear and concise prose, and straight-forward language make this book a delight to read. James E. Lidsey holds a Royal Society University Fellowship at Queen Mary and Westfield College. He has been awarded the Valerie Myerscough Prize in Physics, Mathematics and Astronomy as a doctoral student. He was later honored by the Gravity Research the Fifth Prize and named one of the 100 people most likely to play an influential role over the next decade by the Sunday Times. |
![]() ![]() You may like...
Kane (Ultimate Football Heroes - the No…
Matt Oldfield, Tom Oldfield
Paperback
|