Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Applied physics & special topics > Cryogenics
This book describes the life, times and science of the Soviet physicist Lev Vasilevich Shubnikov (1901-1937). From 1926 to 1930 Shubnikov worked in Leiden where he was the co-discoverer of the Shubnikov-De Haas effect. After his return to the Soviet Union he founded in Kharkov in Ukraine the first low-temperature laboratory in the Soviet Union, which in a very short time became the foremost physics institute in the country and among other things led to the discovery of type-II superconductivity. In August 1937 Shubnikov, together with many of his colleagues, was arrested and shot early in November 1937. This gripping story gives deep insights into the pioneering work of Soviet physicists before the Second World War, as well as providing much previously unpublished information about their brutal treatment at the hands of the Stalinist regime.
The minimum temperature in the natural universe is 2.7 K.
Laboratory refrigerators can reach temperatures in the microkelvin
range. Modern industrial refrigerators cool foods at 200 K, whereas
space mission payloads must be capable of working at temperatures
as low as 20 K. Superconducting magnets used for NMR work at 4.2
K. This book provides a guide for engineers, physicists, chemists,
technicians who wish to approach the field of low-temperature
material properties. The focus is on the thermal properties and a
large spectrum of experimental cases is reported. The book presents
updated tables of low-temperature data on materials and a thorough
bibliography supplements any further research. Detailed technical description of experiments
This volume contains the proceedings of The Second Polish-US Conf- ence on High Temperature Superconductivity which was held August 18-21, 1998 in Karpacz, Poland. The conference followed The First Polish-US C- ference on High Temperature Superconductivity organized in 1995, proce- ings of which were published by Springer-Verlag in 1996 (Recent Devel- ments in High Temperature Superconductivity, Lecture Notes in Physics 475). High Temperature Superconductivity (HTSC) in complex copper oxides has become a household name after twelve years of intense research following its discovery in 1986 by J. G. Bednorz and K. A. Miiller. Because of the rapid growth of the HTSC field, there is a need for periodic summary and conden- tion both for scientists working in the field and, especially, for young resear- ers entering the field of oxide materials. Following the First Conference, it was recognized that an extended format of lectures perfectly satisfied that need, providing adequate time for experts from the international community to fully introduce and develop complex ideas. Thus, the format of the Second Conference brought together by cooperating scientists from the Institute of Low Temperature and Structure Research of the Polish Academy of Science at Wroctaw, Northern Illinois University, and Argonne National Laboratory remained mostly unchanged. Again, we were delighted to receive enthusiastic responses from distinguished US and Polish scientists who were invited to p- ticipate.
Refrigeration plays a prominent role in our everyday lives, and cryogenics plays a major role in medical science, space technology and the cooling of low-temperature electronics. This volume contains chapters on basic refrigeration systems, non-compression refrigeration and cooling, and topics related to global environmental issues, alternative refrigerants, optimum refrigerant selection, cost-quality optimization of refrigerants, advanced thermodynamics of reverse-cycle machines, applications in medicine, cryogenics, heat pipes, gas-solid absorption refrigeration, multisalt resorption heat pumps, cryocoolers, thermoacoustic refrigeration, cryogenic heat transfer and enhancement and other topics covering theory, design, and applications, such as pulse tube refrigeration, which is the most efficient of all cryocoolers and can be used in space missions.
The germ plasm of numerous plant species, especially those of forest trees, some agricultural crops, and medicinal plants, is endangered and threatened with extinction. This depletion of germplasm pools and the shrinkage of naturally occurring genetic resources have caused international concern. Conventionally, the germplasm of plants is conserved through seeds, tubers, roots, corms, rhizomes, bulbs, cuttings, etc. However, the germ plasm of a number of trees and plantation crops (such as coconut, cocao, coffee, oil palm, rubber, mango, horse chestnut, etc. ) cannot be preserved since their seed are short-lived (recalcitrant). Likewise, germplasm of vegetatively propagated crops (such as potato and cassava) cannot be stored on a long term basis and has to be grown and multiplied periodically in nurseries and fields. The plants are thus exposed to unpredictable weather conditions and diseases, with the result that instances are known where entire genetic stocks are lost. Therefore, unconventional methods are being developed for the storage and international exchange of germplasm. For this purpose in vitro cultures have been employed, but they can only enable short-to medium term preservation; moreover, cell cultures upon repeated subculture undergo genetic erosion. In view of the recent developments in the in vitro induction of genetic variability through somaclonal variation, somatic hybridization, recombinant DNA technology, etc., new methods need to be employed for the storage of desirable cultures. In this regard freeze preservation of cells in liquid nitrogen (-196 0q, like that of semen, enables long-term storage, theoretically, for an indefinite period of time."
This set comprises 40 volumes covering nineteenth and twentieth century European and American authors. Available as a complete set, mini boxed sets (by theme) or as individual volumes.
This is a benchmark reference work on Cryogenic Engineering which chronicles the major developments in the field. Starting with an historical background, this book reviews the development of data resources now available for cryogenic fields and properties of materials. It presents the latest changes in cryopreservation and the advances over the past 50 years. The book also highlights an exceptional reference listing to provide referral to more details.
Most conventional cryogenic refrigerators and liquefiers operate with pure fluids, the major exception being natural gas liquefiers that use mixed refrigerant processes. The fundamental aspects of mixed refrigerant processes, though very innovative, have not received the due attention in open literature in view of commercial interests. Hundreds of patents exist on different aspects of mixed refrigerant processes. However, it is difficult to piece together the existing information to choose an appropriate process and an optimum composition or a given application. The aim of the book is to teach (a.) the need for refrigerant mixtures, (b.) the type of mixtures that can be used for different refrigeration and liquefaction applications, (c.) the different processes that can be used and (d.) the methods to be adopted for choosing the components of a mixture and their concentration for different applications.
This book contains the proceedings of the 16th ICEC/ICMC
Conference, held in Kitakyushu, Japan, on 20th-24th May 1996. The
Proceedings are presented in three volumes containing a total of
476 papers from 1484 authors. The proceedings covers the main areas of: Large Scale
Refrigeration. Cryocoolers. Cryogenic Engineering. Space
Cryogenics. Application of Superconductivity. Oxide
Superconductors. Metallic Superconductors. Metallic Materials. Non
Metallic Materials. In addition there are seven Plenary Lectures covering such
diverse topics as commercialization of high-Tc superconductors, the
continuing development of the Maglev system in Japan, and the Large
Hadron Collider project. The Proceedings comprise an excellent and up-to-date summary of
research and development in the fields of Cryogenics and
Superconductivity.
Bioinspired concepts are becoming increasingly integrated into materials and devices intended for medical applications. Biological organisms evolve within specific environmental constraints, giving rise to elegant and efficient strategies for fabricating materials that often outperform man-made materials of similar composition. A main goal of the interdisciplinary field of bioinspired materials is to unlock the secrets of this process-the composition, processing, self-assembly, hierarchical organization, and properties of biological materials-and use this information to synthesize and engineer novel functional materials for a variety of practical applications. The authors are from a variety of scientific disciplines, including biology, biochemistry, chemistry, physics, materials science, mechanical engineering, and bioengineering. This book will appeal to readers interested in the cross-disciplinary fertilization of new ideas in this emerging field. The first volume of this book includes sections focused on the bioinspired approaches using biological macromolecules including poly(nucleic acids), polypeptides, and the derivatives. Both volumes cover the interdisciplinary fields of biological, synthetic, and the hybrid materials and describe their medical applications ranging from molecular to cellular levels.
Freeze-drying, in the past popular in the food industry, has more recently been adopted by the pharmaceutical industry as a standard method for the production of stable solid preparations. Freeze-drying of Pharmaceuticals and Biopharmaceuticals is the first book to specifically describe this process, as related to the pharmaceutical industry. The emphasis of this book is on the properties of the materials processed, how effective formulations are arrived at, and how they are stored and marketed. Beginning with a historical overview of the process, Freeze-drying of Pharmaceuticals and Biopharmaceuticals briefly describes the processes and equipment involved, including: the physics, chemistry and biochemistry associated with freezing, aspects of formulation development, primary and secondary drying; the economics and engineering of scaling up; and, most importantly, attributes of the dried product. It also discusses in detail the science behind freeze-drying, such as the properties of crystalline and amorphous solids. The book concludes with selected case studies and discusses the future of freeze-drying, advances in alternative drying methods, and concludes with an extensive bibliography. This book, written by a leading expert in the field, is aimed primarily at product and process developers in the biopharmaceutical industry and academia.
Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study. New in the Second Edition: Expands on thermal properties at cryogenic temperatures to include latent heats and superfluid helium Develops the material on conduction heat transfer and divides it into four separate chapters to facilitate understanding of the separate features and computational techniques in conduction heat transfer Introduces EES (Engineering Equation Solver), a computer-aided design tool, and other computer applications such as Maple Describes special features of heat transfer at cryogenic temperatures such as analysis with variable thermal properties, heat transfer in the near-critical region, Kapitza conductance, and network analysis for free-molecular heat transfer Includes design procedures for cryogenic heat exchangers Cryogenic Heat Transfer, Second Edition discusses the unique problems surrounding conduction heat transfer at cryogenic temperatures. This second edition incorporates various computational software methods, and provides expanded and updated topics, concepts, and applications throughout. The book is designed as a textbook for students interested in thermal problems occurring at cryogenic temperatures and also serves as reference on heat transfer material for practicing cryogenic engineers.
This fourth edition is primarily aimed at helping physicists, physical chemists, materials scientists, metallurgists, engineers, and biologists to carry out investigations at low temperatures. This new edition takes into account the major changes in cryogenic technology over the past twenty years. These changes include areas of temperature measurement and control, superconducting magnets, cryocoolers, ultra-low temperatures, technical data on materials, commercially available cryostats for optical, x-ray, thermal and electrical measurements. Less emphasis is now placed on methods of constructing cryostats in the laboratory and more emphasis on commercially available cryostats, temperature controllers, and closed circuit cryocoolers. The book contains comprehensive, up-to-date tables of physical property data on metals, polymers, and ceramics. It will be of value to graduate students as well as to engineers and biologists facing cryogenic problems.
Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspects of helium fluids to provide a source for engineers and scientists to enhance their usefulness in low-temperature systems. Dr. Van Sciver is a Distinguished Research Professor and John H. Gorrie Professor of Mechanical Engineering at Florida State University. He is also a Program Director at the National High Magnetic Field Laboratory (NHMFL). Dr. Van Sciver joined the FAMU-FSU College of Engineering and the NHMFL in 1991, initiating and teaching a graduate program in magnet and materials engineering and in cryogenic thermal sciences and heat transfer. He also led the NHMFL development efforts of the cryogenic systems for the NHMFL Hybrid and 900 MHz NMR superconducting magnets. Between 1997 and 2003, he served as Director of Magnet Science and Technology at the NHMFL. Dr. Van Sciver is a Fellow of the ASME and the Cryogenic Society of America and American Editor for the journal Cryogenics. He is the 2010 recipient of the Kurt Mendelssohn Award. Prior to joining Florida State University, Dr. Van Sciver was Research Scientist and then Professor of Nuclear Engineering, Engineering Physics and Mechanical Engineering at the University of Wisconsin-Madison from 1976 to 1991. During that time he also served as the Associate Director of the Applied Superconductivity Center. Dr. Van Sciver received his PhD in Low Temperature Physics from the University of Washington-Seattle in 1976. He received his BS degree in Engineering Physics from Lehigh University in 1970. Dr. Van Sciver is author of over 200 publications and patents in low temperature physics, liquid helium technology, cryogenic engineering and magnet technology. The first edition of Helium Cryogenics was published by Plenum Press (1986). The present work is an update and expansion of that original project.
Cryogenic systems that involve two-phase (vapour-liquid) flows are widely used in industries such as aerospace, metallurgy, power engineering, and food production, as well as in high energy physics research. The purpose of this book is to describe characteristic features of cryogenic systems involving two-phase flow, create mathematical models of these systems, and then show how the models may be used to develop optimal designs for practical cryogenic systems. Since transient phenomena can produce severe and unexpected effects in cryogenic systems, the authors pay particular attention to this important topic. Examples in the book are drawn from cryogenic fluid transport, gasification, and the stabilisation of superconducting magnets. Much of this work is related to the development of large Russian systems in the areas of space technology, energy research, and particle physics.
Once again the annual Cryogenic Engineering Conference has been held in Boulder, Colorado, and has been hosted by the University of Colorado's College of Engineering and the National Bureau of Standards Boulder Laboratories. In presenting the papers of this ninth national conference, the 1963 Cryogenic Engineering Conference expresses its thanks to these two hosts for the fine cooperation that has existed between these organ i- zations with regard to both cryogenic research and conference activity. Since the Cryogenic Engineering Conference was first initiated in Boulder in 1954 by R. B. Scott, present Manager of the NBS Boulder Laboratories, it is only fitting that this volume of the Advances in Cryogenic Engineering be dedicated to hirn. The 1963 Cryogenic Engineering Conference Committee also gratefully acknow- ledges the assistance of an Editorial Committee both in selecting papers for the program and in carefully reviewing the final papers for this volume. Participants in this thankless task inc1uded R. W. Arnett, V. D. Arp, P. L. Barrick, D. A. Burgeson, D. B. Chelton, R. S. Collier, J. W. Dean, T. M. Flynn, R. N. Herring, M. J. Hiza, J. Hord, J. G. Hust, V. J. Johnson, F. Kreith, R. H. Kropschot, P. R. Ludtke, D. B. Mann, R. D. McCarty, L. MuHen, M. T. Norton, R. P. Reed, R. F. Robbins, W. G. Steward, R. B. Stewart, D. H. Weitzel, and W. A. Wilson.
The 1961 Cryogenic Engineering Conference Committee is pleased to present the papers of the 1961 Cryogenic Engineering Conference. We are grateful to have had the University of Michigan at Ann Arbor, Michigan as our host for the seventh annual meeting of this group. The Conference Committee in presenting the papers oftbis Conference takes this opportunity to acknowledge the assistance of an Editorial Committee in the selection of papers for the program. Since over one hundred and twenty papers were submitted, their task of screening and evaluating the papers was a dif ficult one. The Committee guided by G. j. V an Wylen, who also served as chair man of the Conference Committee, included R. W. Arnett, B. W. Birmingham, D. B. Chelton, R. j. Corruccini, C. j. Guntner, M. j. Hiza, R. B. jacobs, A. J. Kidnay, R. H. Kropschot, j. Macinko, D. B. Mann, R. P. Mikesell, R. L. Powell, J. R. Purcell, R. P. Reed, R. j. Richards, A. F. Schmidt, R. B. Stewart, and K. A. Warren."
The year 1973 marked the first time that Atlanta, one of the cultural centers of the South, has hosted the Cryogenic Engineering Conference since its beginning in 1954. The Cryogenic Engineering Conference gratefully acknowledges the hospital ity of the Georgia Institute of Technology and the assistance of W. T. Ziegler and his staff in making the visit to Atlanta a pleasant and memorable one. Several significant changes were initiated at the 1973 Cryogenic Engineering Conference. These included a Conference theme on the subject of "Energy and the Environment," a new Conference format, and the beginning of a new Conference frequency of biennial meetings. While retaining the traditional topics of previous meetings, the 1973 Cryogenic Engineering Conference focused on the role of cryo genic engineering in the generation, distribution, and conversion of energy, and the related environmental effects. In these areas, much of the current interest stems from the environmental effects of LNG and liquid hydrogen as compared with other competing energy forms. These rapidly expanding areas may provide the impetus to cryogenic engineering in the 1970's that the space program provided in the 1960's. The Conference format was altered by the use of numerous invited papers highlighting the theme. These presentations were concentrated in plenary sessions initiating each day's activities, and in seminars designed to summarize the various aspects of the theme."
The National Bureau of Standards Boulder Laboratories at Boulder, Colorado once again served as the host for the 1972 Cryogenic Engineering Conference. For the Cryogenic Engineering Conference it was like coming horne, for it was at the NBS Boulder Laboratories that the Cryogenic Engineering Conference was first conceived and held m 1954m connection with the dedication ofthe NBS Boulder Laboratories by President Dwight D. Eisenhower. The Cryogenic Engineering Conference IS grateful for the continuing support that the National Bureau of Standards has gIVen over the years, and which was expanded on July 1, 1971 when the NBS Boulder Laboratories assumed the secretariat function of the Conference from the National Academy of Sciences. Because of common interests in heat transfer, the 1972 Cryogemc Engineering Conference worked with the 13th National Heat Transfer Conference to develop a joint program m heat transfer. A majority ofthe papers presented in this cooperative effort are incIuded m V olume 18 of the Advances zn Cryogenic Engineerzng through the kmd permission ofthe 13th NatIOnal Heat Transfer Conference and are acknowl edged accordingly." |
You may like...
|