![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics
This book is aimed at students making the transition from a first course on general relativity to a specialized subfield. It presents a variety of topics under the general headings of gravitational waves in vacuo and in a cosmological setting, equations of motion, and black holes, all having a clear physical relevance and a strong emphasis on space-time geometry. Each chapter could be used as a basis for an early postgraduate project for those who are exploring avenues into research in general relativity and who have already accumulated the required technical knowledge. The presentation of each chapter is research monograph style, rather than text book style, in order to impress on interested students the need to present their research in a clear and concise format. Students with advanced preparation in general relativity theory might find a treasure trove here.
General Relativity has passed all experimental and observational tests to model the motion of isolated bodies with strong gravitational fields, though the mathematical and numerical study of these motions is still in its infancy. It is believed that General Relativity models our cosmos, with a manifold of dimensions possibly greater than four and debatable topology opening a vast field of investigation for mathematicians and physicists alike. Remarkable conjectures have been proposed, many results have been obtained but many fundamental questions remain open. In this monograph, aimed at researchers in mathematics and physics, the author overviews the basic ideas in General Relativity, introduces the necessary mathematics and discusses some of the key open questions in the field.
Einstein's general theory of relativity is introduced in this
advanced undergraduate and beginning graduate level textbook.
Topics include special relativity, in the formalism of Minkowski's
four-dimensional space-time, the principle of equivalence,
Riemannian geometry and tensor analysis, Einstein field equation,
as well as many modern cosmological subjects, from primordial
inflation and cosmic microwave anisotropy to the dark energy that
propels an accelerating universe.
This book introduces the modern field of 3+1 numerical relativity. The book has been written in a way as to be as self-contained as possible, and only assumes a basic knowledge of special relativity. Starting from a brief introduction to general relativity, it discusses the different concepts and tools necessary for the fully consistent numerical simulation of relativistic astrophysical systems, with strong and dynamical gravitational fields. Among the topics discussed in detail are the following; the initial data problem, hyperbolic reductions of the field equations, guage conditions, the evolution of black hole space-times, relativistic hydrodynamics, gravitational wave extraction and numerical methods. There is also a final chapter with examples of some simple numerical space-times. The book is aimed at both graduate students and researchers in physics and astrophysics, and at those interested in relativistic astrophysics.
Dalton's theory of the atom is generally considered to be what made
the atom a scientifically fruitful concept in chemistry. To be
sure, by Dalton's time the atom had already had a two-millenium
history as a philosophical idea, and corpuscular thought had long
been viable in natural philosophy (that is, in what we would today
call physics).
The chapters in this monograph are contributions from the Advances in Quantum Monte Carlo symposium held at Pacifichem 2010, International Chemical Congress of Pacific Basin Societies. The symposium was dedicated to celebrate the career of James B. Anderson, a notable researcher in the field. Quantum Monte Carlo provides an ab initio solution to the Schroedinger equation by performing a random walk through configuration space in imaginary time. Benchmark calculations suggest that its most commonly-used variant, "fixed-node" diffusion Monte Carlo, estimates energies with an accuracy comparable to that of high-level coupled-cluster calculations. These two methods, each having advantages and disadvantages, are complementary "gold-standards" of quantum chemistry. There are challenges facing researchers in the field, several of which are addressed in the chapters in this monograph. These include improving the accuracy and precision of quantum Monte Carlo calculations; understanding the exchange nodes and utilizing the simulated electron distribution; extending the method to large and/or experimentally-challenging systems; and developing hybrid molecular mechanics/dynamics and Monte Carlo algorithms.
This book takes a fresh look at understanding how financial markets behave. Using recent ideas from the highly-topical science of complexity and complex systems, the book provides the basis for a unified theoretical description of how today's markets really work. Since financial markets are an excellent example of a complex system, the book also doubles as a science textbook.
Conjugated polymers have important technological applications, including solar cells and light emitting devices. They are also active components in many important biological processes. In recent years there have been significant advances in our understanding of these systems, owing to both improved experimental measurements and the development of advanced computational techniques. The aim of this book is to describe and explain the electronic and optical properties of conjugated polymers. It focuses on the three key roles of electron-electron interactions, electron-nuclear coupling, and disorder in determining the character of the electronic states, and it relates these properties to experimental observations in real systems. A number of important optical and electronic processes in conjugated polymers are also described. The second edition has a more extended discussion of excitons in conjugated polymers. There is also a new chapter on the static and dynamical localization of excitons.
Primarily intended for postgraduate students and researchers in the
fields of condensed matter science, chemical physics and material
science, who plan to use the muon spin rotation, relaxation amd
resonance (mSR) techniques, this book combines for the first time a
detailed discussion of the physical information contained in the
measured polarization functions with real-life examples taken from
the literature.
The study of planet formation has been revolutionized by recent observational breakthroughs, which have allowed the detection and characterization of extrasolar planets, the imaging of protoplanetary disks, and the discovery of the Solar System's Kuiper Belt. Written for beginning graduate students, this textbook provides a basic understanding of the astrophysical processes that shape the formation of planetary systems. It begins by describing the structure and evolution of protoplanetary disks, moves on to the formation of planetesimals, terrestrial and gas giant planets, and concludes by surveying new theoretical ideas for the early evolution of planetary systems. Covering all phases of planet formation - from protoplanetary disks to the dynamical evolution of planetary systems - this introduction can be understood by readers with backgrounds in planetary science, and observational and theoretical astronomy. It highlights the physical principles underlying planet formation and the areas where more research and new observations are needed.
The emphasis of Planetary Atmospheres is on comparative aspects of
planetary atmospheres, generally meaning comparison with the Earth,
including atmospheric composition, thermal structure, cloud
properties, dynamics, weather and climate, and aeronomy. The goal
is to look for common processes at work under different boundary
conditions in order to reach a fundamental understanding of the
physics of atmospheres. As part of a general Physics course, the
material is chosen to emphasise certain aspects that will be of
broad topical interest:
This is a textbook on the theory and calculation of molecular
electromagnetic and spectroscopic properties designed for a
one-semester course with lectures and exercise classes. The idea of
the book is to provide thorough background knowledge for the
calculation of electromagnetic and spectroscopic properties of
molecules with modern quantum chemical software packages.
Flight dynamics create important research problems in the process of helicopter design. They involve advanced design ideas and engineering technology theories. This book concerns flight theory and research methods for helicopter flight science and technology. The contents include the fundamentals of rotor aerodynamics, helicopter trim, helicopter stability and control, and helicopter performance analyses. The book also lokks at the kinematics, dynamics, control, and aerodynamics of the helicopter during maneuvering flight. With an emphasis on the physical concepts, the characteristics of rotor flapping, theoretical analyses and numerical simulation methods for helicopter flight mechanics are detail described in detail. The book is primarily intended for senior undergraduates and postgraduates who major in aerospace engineering. It is also a good reference book for helicopter engineers interested design and operational engineering. It lays a foundation for the study of helicopter aeromechanics.
This book focuses on the characteristics of optical radiation, or a spectrum, emitted by various plasmas. In plasma, the same atomic species can produce quite different spectra, or colors depending on the nature of the plasma. This book gives a theoretical framework, by which a particular spectrum can be interpreted correctly and coherently. The uniqueness of the book lies in its comprehensive treatment of the intensity distribution of spectral lines and the population density distribution among the atomic levels, in plasma. It is intended to provide beginners with a good perspective of the field, laying out the physics in an extremely clear manner, starting from an elementary level. A very useful feature of the book is the asterisked sections and chapters which can be skipped by readers, who only wish to gain a quick and basic introduction to plasma spectroscopy. It will also be very useful to researchers working actively in the field, acting as a guide for carrying out experiments and interpreting experimental observations.
Energy, water, affordable healthcare and global warming are four major concerns resulting from resource depletion, record high oil prices, clean water shortages, high costs of pharmaceuticals, and changing climate conditions. Among many potential solutions, advance in membrane technology is one of the most direct, effective and feasible approaches to solve these sophisticated issues. This membrane book presents cutting-edge membrane research and development for water reuse and desalination, energy development including biofuels, CO2 capture, pharmaceutical purification and separation, and biomedical applications.
Advances in Quantum Monte Carlo confronts the challenges in quantum mechanics that have become progressively more prevalent in the last five years. This book will cover the needed advances in Quantum Monte Carlo methods including improvements and a complete range of applications. Advances in Quantum Monte Carlo will also include a complete spectrum of applications.
The pioneer astronauts who took America into space tell their
personal stories about the challenges they faced -- their fears,
joys, friendships, and successes. Chosen from hundreds of crackerjack pilots for their fitness, intelligence, and courage, the original Mercury Seven astronauts risked their lives to cross the space frontier. In "We Seven, " they take readers behind the scenes to show them their training, technology, and teamwork, and to share personal stories, including the lighter moments of their mission. They bring readers inside the Mercury program -- even into the space capsules themselves. "We Seven" straps you in with the astronauts and rockets you along for the ride. Share Alan Shepard's exhilaration as he breaks through the earth's atmosphere. Endure moments of panic with Gus Grissom when his hatch blows, stranding him in the open sea. Race with John Glenn as he makes split-second life-or-death maneuvers during reentry, and feel his relief when he emerges safe but drenched with sweat. Despite such heroism, Project Mercury was more than the story of individual missions. It defined the manned space flight program to come, from Gemini through Apollo. In "We Seven, " America's original astronauts tell us firsthand -- as only they can -- about the space program they pioneered, and share with us the hopes and dreams of the U.S. at the dawn of a new era.
One of the questions about which humanity has often wondered is the arrow of time. Why does temporal evolution seem irreversible? That is, we often see objects break into pieces, but we never see them reconstitute spontaneously. This observation was first put into scientific terms by the so-called second law of thermodynamics: entropy never decreases. However, this law does not explain the origin of irreversibly; it only quantifies it. Kinetic theory gives a consistent explanation of irreversibility based on a statistical description of the motion of electrons, atoms, and molecules. The concepts of kinetic theory have been applied to innumerable situations including electronics, the production of particles in the early universe, the dynamics of astrophysical plasmas, quantum gases or the motion of small microorganisms in water, with excellent quantitative agreement. This book presents the fundamentals of kinetic theory, considering classical paradigmatic examples as well as modern applications. It covers the most important systems where kinetic theory is applied, explaining their major features. The text is balanced between exploring the fundamental concepts of kinetic theory (irreversibility, transport processes, separation of time scales, conservations, coarse graining, distribution functions, etc.) and the results and predictions of the theory, where the relevant properties of different systems are computed.
Bringing his cosmic perspective to civilization on Earth, Neil deGrasse Tyson, bestselling author of Astrophysics for People in a Hurry, shines new light on the crucial fault lines of our time–war, politics, religion, truth, beauty, gender, race, and tribalism–in a way that stimulates a deeper sense of unity for us all. In a time when our political and cultural perspectives feel more divisive than ever, Tyson provides a much-needed antidote to so much of what divides us, while making a passionate case for the twin engines of enlightenment–a cosmic perspective and the rationality of science. After thinking deeply about how a scientist views the world and about what Earth looks like from space, Tyson has found that terrestrial thoughts change as our brain resets and recalibrates life's priorities, along with the actions we might take in response. As a result, no outlook on culture, society, or civilisation remains untouched. In Starry Messenger, Tyson reveals just how human the enterprise of science is. Far from a cold, unfeeling undertaking, scientific methods, tools, and discoveries have shaped modern civilisation and created the landscape we've built for ourselves on which to live, work, and play. Tyson shows how an infusion of science and rational thinking renders worldviews deeper and more informed than ever before–and exposes unfounded perspectives and unjustified emotions. With crystalline prose and an abundance of evidence, Starry Messenger walks us through the scientific palette that sees and paints the world differently. From lessons on resolving global conflict to reminders of how precious it is to be alive, Tyson reveals, with warmth and eloquence, ten surprising, brilliant, and beautiful truths of human society, informed and enlightened by knowledge of our place in the universe.
Ozone, an important trace component, is critical to life on Earth and to atmospheric chemistry. The presence of ozone profoundly impacts the physical structure of the atmosphere and meteorology. Ozone is also an important photolytic source for HO radicals, the driving force for most of the chemistry that occurs in the lower atmosphere, is essential to shielding biota, and is the only molecule in the atmosphere that provides protection from UV radiation in the 250-300 nm region. However, recent concerns regarding environmental issues have inspired a need for a greater understanding of ozone, and the effects that it has on the Earth's atmosphere. The Mechanisms of Reactions Influencing Atmospheric Ozone provides an overview of the chemical processes associated with the formation and loss of ozone in the atmosphere, meeting the need for a greater body of knowledge regarding atmospheric chemistry. Renowned atmospheric researcher Jack Calvert and his coauthors discuss the various chemical and physical properties of the earth's atmosphere, the ways in which ozone is formed and destroyed, and the mechanisms of various ozone chemical reactions in the different spheres of the atmosphere. The volume is rich with valuable knowledge and useful descriptions, and will appeal to environmental scientists and engineers alike. A thorough analysis of the processes related to tropospheric ozone, The Mechanisms of Reactions Influencing Atmospheric Ozone is an essential resource for those hoping to combat the continuing and future environmental problems, particularly issues that require a deeper understanding of atmospheric chemistry.
From a star astrophysicist, a journey into the world of particle physics and the cosmos -- and a call for more just, inclusive practice of science. Science, like most fields, is set up for men to succeed, and is rife with racism, sexism, and shortsightedness as a result. But as Dr. Chanda Prescod-Weinstein makes brilliantly clear, we all have a right to know the night sky. One of the leading physicists of her generation, she is also one of the fewer than one hundred Black women to earn a PhD in physics. You will enjoy -- and share -- her love for physics, from the Standard Model of Particle Physics and what lies beyond it, to the physics of melanin in skin, to the latest theories of dark matter -- all with a new spin and rhythm informed by pop culture, hip hop, politics, and Star Trek. This vision of the cosmos is vibrant, inclusive and buoyantly non-traditional. By welcoming the insights of those who have been left out for too long, we expand our understanding of the universe and our place in it. The Disordered Cosmos is a vision for a world without prejudice that allows everyone to view the wonders of the universe through the same starry eyes.
|
![]() ![]() You may like...
DNA Damage and Double Strand Breaks Part…
Fuyuhiko Tamanoi, Kenichi Yoshikawa
Hardcover
R4,190
Discovery Miles 41 900
New Phenomena And New States Of Matter…
Cesar Augusto Zen Vasconcellos, Peter Otto Hess, …
Hardcover
R3,332
Discovery Miles 33 320
Astrophysics In The Xxi Century With…
Cesar Augusto Zen Vasconcellos, Fridolin Weber
Hardcover
R3,329
Discovery Miles 33 290
Geophysical Exploration of the Solar…
Cedric Schmelzbach, Simon Christian Stahler
Hardcover
R5,874
Discovery Miles 58 740
Advances in Microbial Physiology, Volume…
Robert K. Poole, David J. Kelly
Hardcover
R4,787
Discovery Miles 47 870
Jack Sabin, Scientist and Friend, Volume…
Jens Oddershede, Erkki J. Brandas
Hardcover
R6,377
Discovery Miles 63 770
A Brief History of Black Holes - And why…
Dr. Becky Smethurst
Hardcover
|