![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics
Based on 3D smoothed particle hydrodynamics simulations performed with unprecedented high resolution, this book examines the giant impacts that dominate many planets' late accretion and evolution. The numerical methods developed are now publicly available, greatly facilitating future studies of planetary impacts in our solar system and exoplanetary systems. The book focuses on four main topics: (1) The development of new methods to construct initial conditions as well as a hydrodynamical simulation code to evolve them, using 1000 times more simulation particles than the previous standard. (2) The numerical convergence of giant impact simulations -- standard-resolution simulations fail to converge on even bulk properties like the post-impact rotation period. (3) The collision thought to have knocked over the planet Uranus causing it to spin on its side. (4) The erosion of atmospheres by giant impacts onto terrestrial planets, and the first full 3D simulations of collisions in this regime.
Advances in Microbial Physiology, Volume 70 continues the long tradition of topical, important, cutting-edge reviews in microbiology with this new volume covering a variety of topics, including Bacterial Hemoprotein Sensors of NO: H-NOX and NosP, Manganese in Marine Microbiology, Nutritional Immunity and Fungal Pathogenesis: The Struggle for Micronutrients at the Host-Pathogen Interface, Metal-Based Combinations that Target Protein Synthesis by Fungi, Transition Metal Homeostasis in Streptococcus Pyogenes and Streptococcus Pneumoniae, Copper and Antibiotics: Discovery, Modes of Action, and Opportunities for Medicinal Applications, Metal Resistance and Its Association with Antibiotic Resistance, and The Role of Intermetal Competition and Mis-Metalation in Metal Toxicity.
This book presents concepts of theoretical physics with engineering applications. The topics are of an intense mathematical nature involving tools like probability and random processes, ordinary and partial differential equations, linear algebra and infinite-dimensional operator theory, perturbation theory, stochastic differential equations, and Riemannian geometry. These mathematical tools have been applied to study problems in mechanics, fluid dynamics, quantum mechanics and quantum field theory, nonlinear dynamical systems, general relativity, cosmology, and electrodynamics. A particularly interesting topic of research interest developed in this book is the design of quantum unitary gates of large size using the Feynman diagrammatic approach to quantum field theory. Through this book, the reader will be able to observe how basic physics can revolutionize technology and also how diverse branches of mathematical physics like large deviation theory, quantum field theory, general relativity, and electrodynamics have many common issues that provide the starting point for unifying the whole of physics, namely in the formulation of Grand Unified Theories (GUTS).
This book presents peer-reviewed articles from the 1st International Conference on Trends in Modern Physics (TiMP 2021) held at Assam Don Bosco University in Guwahati, India, between February 26 and 27, 2021. This conference was the 3rd in a series of annual conferences of the Department of Physics, ADBU, with the 1st and 2nd being national conferences. The conference was jointly organized by the Department of Physics, ADBU, and the Indian Association of Physics Teachers (IAPT) to promote greater synergy between thematic areas of astrophysics and cosmology, plasma physics, material and nanophysics, nuclear physics, and particle physics
These proceedings present selected research papers from CSNC2017, held during 23th-25th May in Shanghai, China. The theme of CSNC2017 is Positioning, Connecting All. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2017, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.
Silicon, the basic material for a multibillion-dollar industry, is the most widely researched and applied semiconductor, and its surfaces are the most thoroughly studied of all semiconductor surfaces. Silicon Surfaces and Formation of Interfaces may be used as an introduction to graduate-level physics and chemical physics. Moreover, it gives a specialized and comprehensive description of the most common faces of silicon crystals as well as their interaction with adsorbates and overlayers. This knowledge is presented in a systematic and easy-to-follow way. Discussion of each system is preceded by a brief overview which categorizes the features and physical mechanisms before the details are presented. The literature is easily available, and the references am numerous and organized in tables, allowing a search without the need to browse through the text. Though this volume focuses on a scientific understanding of physics on the atomistic and mesoscopic levels, it also highlights existing and potential links between basic research in surface science and applications in the silicon industry. It will be valuable to anyone writing a paper, thesis, or proposal in the field of silicon surfaces.
How to Understand Quantum Mechanics presents an accessible introduction to understanding quantum mechanics in a natural and intuitive way, which was advocated by Erwin Schroedinger and Albert Einstein. A theoretical physicist reveals dozens of easy tricks that avoid long calculations, makes complicated things simple, and bypasses the worthless anguish of famous scientists who died in angst. The author's approach is light-hearted, and the book is written to be read without equations, however all relevant equations still appear with explanations as to what they mean. The book entertainingly rejects quantum disinformation, the MKS unit system (obsolete), pompous non-explanations, pompous people, the hoax of the 'uncertainty principle' (it is just a math relation), and the accumulated junk-DNA that got into the quantum operating system by misreporting it. The order of presentation is new and also unique by warning about traps to be avoided, while separating topics such as quantum probability to let the Schroedinger equation be appreciated in the simplest way on its own terms. This is also the first book on quantum theory that is not based on arbitrary and confusing axioms or foundation principles. The author is so unprincipled he shows where obsolete principles duplicated basic math facts, became redundant, and sometimes were just pawns in academic turf wars. The book has many original topics not found elsewhere, and completely researched references to original historical sources and anecdotes concerting the unrecognized scientists who actually did discover things, did not all get Nobel prizes, and yet had interesting productive lives.
This book explores various aspects of biophysics, from neurobiology to quantum biology and the consciousness of human beings and in the universe. It examines eight different areas of natural intelligence, ranging from time crystals found in chemical biology, to the vibrations and the resonance of proteins, and also discusses hierarchical communication in various biological systems. Written by senior and experts in the field in language that is lucid and easy to understand, it is a valuable reference resource for researchers and practitioners in academia and industry.
This book is the first to focus specifically on cancer nanotheranostics. Each of the chapters that make up this comprehensive volume is authored by a researcher, clinician, or regulatory agency member known for their expertise in this field. Theranostics, the technology to simultaneously diagnose and treat a disease, is a nascent field that is growing rapidly in this era of personalized medicine. As the need for cost-effective disease diagnosis grows, drug delivery systems that can act as multifunctional carriers for imaging contrast and therapy agents could provide unique breakthroughs in oncology. Nanotechnology has enabled the development of smart theranostic platforms that can concurrently diagnose disease, start primary treatment, monitor response and initiate secondary treatments if required. In oncology, chemotherapeutics have been routinely used. Some drugs have proven effective but all carry risks of adverse side effects. There is growing interest in using remotely triggered drug delivery systems to limit cytotoxicity in the diseased area. This book reviews the use of theranostic nanoparticles for cancer applications over the past decade. First, it briefly discusses the challenges and limitations of conventional cancer treatments, and presents an overview of the use of nanotechnology in treating cancer. These introductory chapters are followed by those exploring cancer diagnosis and a myriad of delivery methods for nanotherapeutics. The book also addresses multifunctional platforms, treatment monitoring, and regulatory considerations. As a whole, the book aims to briefly summarize the development and clinical potential of various nanotheranostics for cancer applications, and to delineate the challenges that must be overcome for successful clinical development and implementation of such cancer theranostics.
This monograph traces the development of our understanding of how and where energetic particles are accelerated in the heliosphere and how they may reach the Earth. Detailed data sets are presented which address these topics. The bulk of the observations are from spacecraft in or near the ecliptic plane. It is timely to present this subject now that Voyager-1 has entered the true interstellar medium. Since it seems unlikely that there will be a follow-on to the Voyager programme any time soon, the data we already have regarding the outer heliosphere are not going to be enhanced for at least 40 years.
Of Clocks and Time takes readers on a five-stop journey through the physics and technology (and occasional bits of applications and history) of timekeeping. On the way, conceptual vistas and qualitative images abound, but since mathematics is spoken everywhere the book visits equations, quantitative relations, and rigorous definitions are offered as well. The expedition begins with a discussion of the rhythms produced by the daily and annual motion of sun, moon, planets, and stars. Centuries worth of observation and thinking culminate in Newton's penetrating theoretical insights since his notion of space and time are still influential today. During the following two legs of the trip, tools are being examined that allow us to measure hours and minutes and then, with ever growing precision, the tiniest fractions of a second. When the pace of travel approaches the ultimate speed limit, the speed of light, time and space exhibit strange and counter-intuitive traits. On this fourth stage of the journey, Einstein is the local tour guide whose special and general theories of relativity explain the behavior of clocks under these circumstances. Finally, the last part of the voyage reverses direction, moving ever deeper into the past to explore how we can tell the age of "things" - including that of the universe itself.
This book explains the anatomy and physiology of cartilage tissue in an integrated way. The emphasis is on how cartilage tissue functions and maintains homeostasis in a challenging mechanical environment. Supported by hundreds of references, the book posts new hypotheses explaining how cartilage adapts and achieves homeostasis in vivo, and tests them against available data. This exploratory approach creates a sense of discovery that the reader can join, or perhaps test themselves through their own research. The main benefit will be obtained by research students and professors looking to understand the deeper concepts that will further their own research, or clinicians (including health professionals and surgeons) who want to gain a deeper physiological understanding of cartilage tissue, which can then serve as a basis for more rational clinical decision-making they need to make on a daily basis. To help bridge the gap between basic science and clinically relevant joint disease, applications and interpretations of key physiological concepts are discussed in the context of osteoarthritis at the end of most chapters.
This book examines the human auditory effects of exposure to directed beams of high-power microwave pulses, which research results have shown can cause a cascade of health events when aimed at a human subject or the subject's head. The book details multidisciplinary investigations using physical theories and models, physiological events and phenomena, and computer analysis and simulation. Coverage includes brain anatomy and physiology, dosimetry of microwave power deposition, microwave auditory effect, interaction mechanisms, shock/pressure wave induction, Havana syndrome, and application in microwave thermoacoustic tomography (MTT). The book will be welcomed by scientists, academics, health professionals, government officials, and practicing biomedical engineers as an important contribution to the continuing study of the effects of microwave pulse absorption on humans.
Explores the many facets of redox exchanges that drive magma's behavior and evolution, from the origin of the Earth until today The redox state is one of the master variables behind the Earth's forming processes, which at depth concern magma as the major transport agent. Understanding redox exchanges in magmas is pivotal for reconstructing the history and compositional make-up of our planet, for exploring its mineral resources, and for monitoring and forecasting volcanic activity. Magma Redox Geochemistry describes the multiple facets of redox reactions in the magmatic realm and presents experimental results, theoretical approaches, and unconventional and novel techniques. Volume highlights include: Redox state and oxygen fugacity: so close, so far Redox processes from Earth's accretion to global geodynamics Redox evolution from the magma source to volcanic emissions Redox characterization of elements and their isotopes The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
One approach to learning about stellar populations is to study them at three different levels of resolution. First in our own galaxy; secondly from nearby galaxies where stars can still be resolved; and thirdly in remote galaxies in which the stellar population can only be studied in integrated light. This International Astronomical Union Symposium covered the range of galaxies in its study of their stellar populations. Interspersed with theoretical papers, the observational papers provide a presentation of the progress that has been made in the field.
This book presents contributions from the joint event 8th INGEO International Conference on Engineering Surveying and 4th SIG Symposium on Engineering Geodesy, which was planned to be held in Dubrovnik, Croatia, on April 1-4, 2020 and was canceled due to COVID-19 pandemic situation. Editors, in cooperation with the Local Organisers, are decided to organize the Conference on-line at October 22-23, 2020. We would like to invite you to participation through http://ingeo-sig2020.hgd1952.hr/index.php/2020/08/31/ingeosig2020-virtual-conference-october-22-23-2020/. The event brought together professionals in the fields of civil engineering and engineering surveying to discuss new technologies, their applicability, and operability.
This book uses new data from the very low radio frequency telescope LOFAR to analyse the magnetic structure in the giant radio galaxy NGC6251. This analysis reveals that the magnetic field strength in the locality of this giant radio galaxy is an order of magnitude lower than in other comparable systems. Due to the observational limitations associated with capturing such huge astrophysical structures, giant radio galaxies are historically a poorly sampled population of objects; however, their preferential placement in the more rarefied regions of the cosmic web makes them a uniquely important probe of large-scale structures. In particular, the polarisation of the radio emissions from giant radio galaxies is one of the few tools available to us that can be used to measure magnetic fields in regions where the strength of those fields is a key differentiator for competing models of the origin of cosmic magnetism. Low frequency polarisation data are crucial for detailed analyses of magnetic structure, but they are also the most challenging type of observational data to work with. This book presents a beautifully coupled description of the technical and scientific analysis required to extract valuable information from such data and, as the new generation of low frequency radio telescopes reveals the larger population of giant radio galaxies, it offers a significant resource for future analyses.
These proceedings present selected research papers from CSNC2017, held during 23th-25th May in Shanghai, China. The theme of CSNC2017 is Positioning, Connecting All. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2017, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.
An Introduction to Mining Seismology describes comprehensively the
modern methods and techniques used to monitor and study seismicity
and rockbursts in mines. Key case histories from various worldwide
mining districts clearly illustrate and skillfully emphasize the
practical aspects of mining seismology. This text is intended as a
handbook for geophysicists and mining and rock mechanics engineers
working at mines. It will also serve as an essential reference tool
for seismologists working at research institutions on local
seismicity not necessarily induced by mining.
This volume offers an overview of the state-of-the-art theoretical and practical approaches currently used for geophysical data interpretation. It includes new methods and techniques for solving data processing problems, and an analysis of geopotential fields by international researchers. It discusses topics such as: 1. Theoretical issues of interpretation of gravitational, magnetic and electric fields, including general methods of interpreting potential fields and other geophysical data. 2. Modern algorithms and computer technologies for interpretating geophysical fields. 3. The study of Earth deep structure using terrestrial and satellite potential field anomalies. 4. Geological interpretation of gravitational, magnetic and electric fields. This proceedings book is of interest to all geophysical researchers.
This book focuses on skin photoaging, the premature aging of skin due to environmental effects such as exposure to UV (UVA, UVB) radiation from the sun.
This thesis focuses on the very high Mach number shock wave that is located sunward of Saturn's strong magnetic field in the continuous high-speed flow of charged particles from the Sun (the solar wind). The author exploits the fact that the Cassini spacecraft is the only orbiter in a unique parameter regime, far different from the more familiar near-Earth space, to provide in-situ insights into the unreachable exotic regime of supernova remnants. This thesis bridges the gap between shock physics in the Solar System and the physics of ultra-high Mach number shocks around the remnants of supernova explosions, since to date research into the latter has been restricted to theory, remote observations, and simulations.
This thesis describes novel substrate embedded physical sensors that can be used to monitor different types of cell-based assays non-invasively and label-free. The sensors described provide integrative information of the cells under study with an adaptable time resolution (ranging from milliseconds to days). This information about the dynamic cell response to chemical, physical or biological stimuli defines a new paradigm in fundamental biomedical research. The author, Maximilian Oberleitner, describes approaches in which the cells are directly grown on different sensor surfaces (gold-film electrodes, shear wave resonators or dye-doped polymer films). This approach, with the reacting cells in particularly close proximity and contact with the sensor surface, is key to a remarkable sensitivity, opening the way for a variety of new applications. This thesis not only introduces the fundamentals of each approach, but it also describes in great detail the design principles and elucidates the boundary conditions of the new sensors.
Advances in Geophysics, the latest in this critically acclaimed serialized review journal that has published for over 50 years, contains the latest information available in the field. Since 1952, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now in its 57th volume, it contains material still relevant today. It is truly an essential publication for researchers in all fields of geophysics. Volume 57 of Advances in Geophysics consists of three chapters of interest to a broad readership: "Limit Analysis" is reviewed and explained by Leroy and Maillot, who, apart from presenting the theoretical framework, also present their material in a pedagogic way well-suited for teaching; Malehmir et al. present the state-of-the art in high-resolution geophysical imaging of settings prone to natural hazards by explaining and showing a variety of imaging methods in their rich-illustrated contribution; The importance of light snow in relation to understanding weather and climate is presented by Gultepe et al., who highlight the importance of obtaining high-quality measurements and discuss implications for weather and climate simulations.
This thesis presents a pioneering method for gleaning the maximum information from the deepest images of the far-infrared universe obtained with the Herschel satellite, reaching galaxies fainter by an order of magnitude than in previous studies. Using these high-quality measurements, the author first demonstrates that the vast majority of galaxy star formation did not take place in merger-driven starbursts over 90% of the history of the universe, which suggests that galaxy growth is instead dominated by a steady infall of matter. The author further demonstrates that massive galaxies suffer a gradual decline in their star formation activity, providing an alternative path for galaxies to stop star formation. One of the key unsolved questions in astrophysics is how galaxies acquired their mass in the course of cosmic time. In the standard theory, the merging of galaxies plays a major role in forming new stars. Then, old galaxies abruptly stop forming stars through an unknown process. Investigating this theory requires an unbiased measure of the star formation intensity of galaxies, which has been unavailable due to the dust obscuration of stellar light. |
![]() ![]() You may like...
Fundamental Research in Electrical…
Shahram Montaser Kouhsari
Hardcover
R8,535
Discovery Miles 85 350
Switching Arc Phenomena in Transmission…
Zhiyuan Liu, Jianhua Wang, …
Hardcover
R5,158
Discovery Miles 51 580
Digital Signal Processing In High-Speed…
Jianjun Yu, Nan Chi
Hardcover
R4,621
Discovery Miles 46 210
SAS for Forecasting Time Series, Third…
John C. Brocklebank, David A Dickey, …
Hardcover
R2,864
Discovery Miles 28 640
|