![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics
This book presents recent developments in our systematic studies of hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, as well as accelerating film flow of non-Newtonian power-law fluids (FFNF). These new developments provided in this book are (i) novel system of analysis models based on the developed New Similarity Analysis Method; (ii) a system of advanced methods for treatment of gas temperature- dependent physical properties, and liquid temperature- dependent physical properties; (iii) the organically combined models of the governing mathematical models with those on treatment model of variable physical properties; (iv) rigorous approach of overcoming a challenge on accurate solution of three-point boundary value problem related to two-phase film boiling and condensation; and (v) A pseudo-similarity method of dealing with thermal boundary layer of FFNF for greatly simplifies the heat-transfer analysis and numerical calculation. A system of practical application equations on heat and mass transfer are provided in each chapter, which are formulated based on the rigorous numerical solutions with consideration of variable physical properties. In addition, in the second edition, other new research developments are further included on resolving an even big challenge associated with investigations of laminar free film condensation of vapour-gas mixture. They involve the novel methods for treatment of concentration- and temperature- dependent physical properties of vapour-gas mixture, and for rigorous solution of interfacial vapour saturation temperature, which have lead to rigorous analysis and calculation results on two-phase film flow velocity, temperature, and concentration fields, as well as condensate heat and mass transfer.
This monograph presents the latest results related to bio-mechanical systems and materials. The bio-mechanical systems with which his book is concerned are prostheses, implants, medical operation robots and muscular re-training systems. To characterize and design such systems, a multi-disciplinary approach is required which involves the classical disciplines of mechanical/materials engineering and biology and medicine. The challenge in such an approach is that views, concepts or even language are sometimes different from discipline to discipline and the interaction and communication of the scientists must be first developed and adjusted. Within the context of materials' science, the book covers the interaction of materials with mechanical systems, their description as a mechanical system or their mechanical properties.
In this thesis, real-time evolution of the nanopore channel growth and self-ordering process in anodic nanoporous alumina are simulated on the basis of an established kinetics model. The simulation results were in accordance with the experiments on the (i) growth sustainability of pore channels guided by pre-patterns; and (ii) substrate grain orientation dependence on self-ordering. In addition, a new fabrication method for the rapid synthesis of highly self-ordered nanoporous alumina is established, based on a systematic search for the self-ordering conditions in experiments. Lastly, it reports on a novel surface-charge induced strain in nanoporous alumina-aluminium foils, which indicates that nanoporous alumina can be used as a new type of actuating material in micro-actuator applications.
The volumes in this authoritative series present a
multidisciplinary approach to modeling and simulation of flows in
the cardiovascular and ventilatory systems, especially multiscale
modeling and coupled simulations. The cardiovascular and
respiratory systems are tightly coupled, as their primary function
is to supply oxygen to and remove carbon dioxide from the body's
cells. Because physiological conduits have deformable and reactive
walls, macroscopic flow behavior and prediction must be coupled to
nano- and microscopic events in a corrector scheme of regulated
mechanisms when the vessel lumen caliber varies markedly.
Therefore, investigation of flows of blood and air in physiological
conduits requires an understanding of the biology, chemistry, and
physics of these systems together with the mathematical tools to
describe their functioning.
In 2010, the ALPHA collaboration achieved a first for mankind: the stable, long-term storage of atomic antimatter, a project carried out a the Antiproton Decelerator facility at CERN. A crucial element of this observation was a dedicated silicon vertexing detector used to identify and analyze antihydrogen annihilations. This thesis reports the methods used to reconstruct the annihilation location. Specifically, the methods used to identify and extrapolate charged particle tracks and estimate the originating annihilation location are outlined. Finally, the experimental results demonstrating the first-ever magnetic confinement of antihydrogen atoms are presented. These results rely heavily on the silicon detector, and as such, the role of the annihilation vertex reconstruction is emphasized.
This book deals with the new method of laser-driven acceleration for application to radiation biophysics and medicine. It provides multidisciplinary contributions from world leading scientist in order to assess the state of the art of innovative tools for radiation biology research and medical applications of ionizing radiation. The book contains insightful contributions on highly topical aspects of spatio-temporal radiation biophysics, evolving over several orders of magnitude, typically from femtosecond and sub-micrometer scales. Particular attention is devoted to the emerging technology of laser-driven particle accelerators and their application to spatio-temporal radiation biology and medical physics, customization of non-conventional and selective radiotherapy and optimized radioprotection protocols.
The critically acclaimed serialized review journal for over 50 years, "Advances in Geophysics" is a highly respected publication in the field of geophysics. Since 1952, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now in its 52nd volume, it contains much material still relevant today--truly an essential publication for researchers in all fields of geophysics.
This exhaustive survey is the result of a four year effort by many leading researchers in the field to produce both a readable introduction and a yardstick for the many upcoming experiments using heavy ion collisions to examine the properties of nuclear matter. The books falls naturally into five large parts, first examining the bulk properties of strongly interacting matter, including its equation of state and phase structure. Part II discusses elementary hadronic excitations of nuclear matter, Part III addresses the concepts and models regarding the space-time dynamics of nuclear collision experiments, Part IV collects the observables from past and current high-energy heavy-ion facilities in the context of the theoretical predictions specific to compressed baryonic matter. Part V finally gives a brief description of the experimental concepts. The book explicitly addresses everyone working or planning to enter the field of high-energy nuclear physics.
The first part of the book provides a pedagogical introduction to the physics of complex systems driven far from equilibrium. In this part we discuss the basic concepts and theoretical techniques which are commonly used to study classical stochastic transport in systems of interacting driven particles. The analytical techniques include mean-field theories, matrix product ansatz, renormalization group, etc. and the numerical methods are mostly based on computer simulations. In the second part of the book these concepts and techniques are applied not only to vehicular traffic but also to transport and traffic-like phenomena in living systems ranging from collective movements of social insects (for example, ants) on trails to intracellular molecular motor transport. These demonstrate the conceptual unity of the fundamental principles underlying the apparent diversity of the systems and the utility of the theoretical toolbox of non-equilibrium statistical mechanics in interdisciplinary research far beyond the traditional disciplinary boundaries of physics.
This volume integrates the latest findings on earliest life forms, identified and characterised in some of the oldest rocks on Earth. New material from prominent researchers in the field is presented and evaluated in the context of previous work. Emphasis is placed on the integration of analytical methods with observational techniques and experimental simulations. The opening section focuses on submarine hot springs that the majority of researchers postulates served as the cradle of life on Earth. In subsequent sections, evidence for life in strongly metamorphosed rocks such as those in Greenland is evaluated and early ecosystems identified in the well preserved Barberton and Pilbara successions in Southern Africa and Western Australia. The final section includes a number of contributions from authors with alternate perspectives on the evidence and record of early life on Earth. Audience This volume will be valuable to researchers and graduate students in biogeosciences, geochemistry, paleontology and geology interested in the origin of life on earth.
Since the year 2000 the ESA Cluster mission has been investigating the small-scale structures and processes of the Earth's plasma environment, such as those involved in the interaction between the solar wind and the magnetospheric plasma, in global magnetotail dynamics, in cross-tail currents, and in the formation and dynamics of the neutral line and of plasmoids. This book contains presentations made at the 15th Cluster workshop held in March 2008. It also presents several articles about the Cluster Active Archive and its datasets, a few overview papers on the Cluster mission, and articles reporting on scientific findings on the solar wind, the magnetosheath, the magnetopause and the magnetotail.
"Advances in Imaging and Electron Physics " merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy."
The book is based on lectures presented on the International Summer School on Biophysics held in Croatia in September 2009. The advantage of the School is that it provides advanced training in very broad scope of areas related to biophysics contrary to other similar schools or workshops that are centered mainly on one topic or technique. In this volume, tenth in the row, the papers in the field of biophysics are presented. The topics are biological phenomena from single protein to macromolecular aggregations structure by using variant physical methods (NMR, EPR, FTIR, Mass Spectrometry, etc.). The interrelationship of supramolecular structures and their functions is enlightened by applications of principals of these physical methods in the biophysical and molecular biology context.
In the past decade, there has been a burst of new and fascinating physics associated to the unique properties of two-dimensional exciton polaritons, their recent demonstration of condensation under non-equilibrium conditions and all the related quantum phenomena, which have stimulated extensive research work. This monograph summarizes the current state of the art of research on exciton polaritons in microcavities: their interactions, fast dynamics, spin-dependent phenomena, temporal and spatial coherence, condensation under non-equilibrium conditions, related collective quantum phenomena and most advanced applications. The monograph is written by the most active authors who have strongly contributed to the advances in this area. It is of great interests to both physicists approaching this subject for the first time, as well as a wide audience of experts in other disciplines who want to be updated on this fast moving field.
This book provides the mathematical foundations of the theory of hyperhamiltonian dynamics, together with a discussion of physical applications. In addition, some open problems are discussed. Hyperhamiltonian mechanics represents a generalization of Hamiltonian mechanics, in which the role of the symplectic structure is taken by a hyperkahler one (thus there are three Kahler/symplectic forms satisfying quaternionic relations). This has proved to be of use in the description of physical systems with spin, including those which do not admit a Hamiltonian formulation. The book is the first monograph on the subject, which has previously been treated only in research papers.
This thesis presents an impressive summary of the potential to use passive seismic methods to monitor the sequestration of anthropogenic CO2 in geologic reservoirs. It brings together innovative research in two distinct areas - seismology and geomechanics - and involves both data analysis and numerical modelling. The data come from the Weyburn-Midale project, which is currently the largest Carbon Capture and Storage (CCS) project in the world. James Verdon's results show how passive seismic monitoring can be used as an early warning system for fault reactivation and top seal failure, which may lead to the escape of CO2 at the surface.
"Advances in Imaging and Electron Physics " merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy."
"Morphology Genetic Materials Templated from Nature Species" provides a comprehensive and up-to-date coverage of research on bio-inspired functional materials including materials science and engineering aspects of the fabrication, properties, and applications. The book discusses bio-inspired strategies integrating biotemplate, biomineralization, and biomimesis in nature, which are adopted to fabricate functional materials with hierarchical bio-architectures and interrelated outstanding performances, as well as valuable applications in photoelectricity, photonics, photocatalysis, chemical detection, bio-imaging, and photoelectron transfer components/devices. The book is intended for researchers and graduate students in the fields of materials science, chemistry, nanotechnology, semiconductor, biotechnology, environmental engineering, etc. Prof. Dr. Di Zhang is currently a professor at the School of Materials Science and Engineering, Shanghai Jiao Tong University, and the director of the State Key Laboratory of Metal Matrix Composites, China. "
"Advances in Imaging and Electron Physics " merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy."
Improved geospatial instrumentation and technology such as in laser scanning has now resulted in millions of data being collected, e.g., point clouds. It is in realization that such huge amount of data requires efficient and robust mathematical solutions that this third edition of the book extends the second edition by introducing three new chapters: Robust parameter estimation, Multiobjective optimization and Symbolic regression. Furthermore, the linear homotopy chapter is expanded to include nonlinear homotopy. These disciplines are discussed first in the theoretical part of the book before illustrating their geospatial applications in the applications chapters where numerous numerical examples are presented. The renewed electronic supplement contains these new theoretical and practical topics, with the corresponding Mathematica statements and functions supporting their computations introduced and applied. This third edition is renamed in light of these technological advancements.
Most stars appear to show some degree of magnetic activity. Varying magnetic fields show up in the familiar sun-spot cycle and in similar activity in other cool stars. Many hot stars carry steady magnetic fields stronger than the average solar field and are well described as oblique rotators. A similar model is applicable to the rapidly rotating, enormously dense neutron stars with their far stronger fields, observed as radio and X-ray pulsars. Galactic magnetic fields may play a crucial role in star formation, and in the spectacular behaviour in galactic nuclei. Cosmical magnetism in general is a rapidly developing field, and this book has grown out of the lifelong work of an outstanding researcher in the area. An authoritative account with broad astronomical scope, its thorough, careful and well-argued approach makes it a fine addition to the professional literature. Most of the important topics are treated in mathematical depth with references to other relevant literature. Some of the studies, especially those on accretion discs, dynamos, and winds, are applicable to galaxies and galactic nuclei. This book is sure to become an invaluable professional reference and guide to current thinking in the field. It will be of particular interest to graduate students, for whom it shows how the area has developed and indicates the many challenging research problems, some of which may soon yield their secrets to the emerging supercomputers.
Neutrinos continue to be the most mysterious and, arguably, the most fascinating particles of the Standard Model as their intrinsic properties such as absolute mass scale and CP properties are unknown. The open question of the absolute neutrino mass scale will be addressed with unprecedented accuracy by the Karlsruhe Tritium Neutrino (KATRIN) experiment, currently under construction. This thesis focusses on the spectrometer part of KATRIN and background processes therein. Various background sources such as small Penning traps, as well as nuclear decays from single radon atoms are fully characterized here for the first time. Most importantly, however, it was possible to reduce the background in the spectrometer by more than five orders of magnitude by eliminating Penning traps and by developing a completely new background reduction method by stochastically heating trapped electrons using electron cyclotron resonance (ECR). The work beautifully demonstrates that the obstacles and challenges in measuring the absolute mass scale of neutrinos can be met successfully if novel experimental tools (ECR) and novel computing methods (KASSIOPEIA) are combined to allow almost background-free tritium ss-spectroscopy.
"Advances in Imaging and Electron Physics " merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy."
Astronomers learn much of what they know about the mass, brightness, and size of stars by observing binary systems, in which two stars orbit each other, periodically cutting off the others light. This book provides astronomers with a guide to specifying an astrophysical model for a set of observations, selecting an algorithm to determine the parameters of the model, and estimating the errors of the parameters.
This two-part book is devoted to classic fundamentals and current practices and perspectives of modern plasma astrophysics. This first part uniquely covers all the basic principles and practical tools required for understanding and work in plasma astrophysics. More than 25% of the text is updated from the first edition, including new figures, equations and entire sections on topics such as magnetic reconnection and the Grad-Shafranov equation. The book is aimed at professional researchers in astrophysics, but it will also be useful to graduate students in space sciences, geophysics, applied physics and mathematics, especially those seeking a unified view of plasma physics and fluid mechanics. |
You may like...
Handbook of Hormones - Comparative…
Hironori Ando, Kazuyoshi Ukena, …
Paperback
R5,129
Discovery Miles 51 290
High-Density Sequencing Applications in…
Agamemnon J. Carpousis
Hardcover
R4,329
Discovery Miles 43 290
The Arctic - A Barometer of Global…
Neloy Khare, Rajni Khare
Paperback
R2,821
Discovery Miles 28 210
|