![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics
Researchers in the field of exploration geophysics have developed new methods for the acquisition, processing and interpretation of gravity and magnetic data, based on detailed investigations of bore wells around the globe. "Fractal Models in Exploration Geophysics" describes fractal-based models for characterizing these complex subsurface geological structures. The authors introduce the inverse problem using a fractal
approach which they then develop with the implementation of a
global optimization algorithm for seismic data: very fast simulated
annealing (VFSA). This approach provides high-resolution inverse
modeling results-particularly useful for reservoir
characterization. * Serves as a valuable resource for researchers studying the application of fractals in exploration, and for practitioners directly applying field data for geo-modeling * Discusses the basic principles and practical applications of time-lapse seismic reservoir monitoring technology-application rapidly advancing topic * Provides the fundamentals for those interested in reservoir geophysics and reservoir simulation study * Demonstrates an example of reservoir simulation for enhanced oil recovery using CO2 injection
This book presents an analysis of our current knowledge on the origin of the Earth's continental crust. There are two aspects to consider: tectonic and igneous processes. Tectonic aspects include sedimentary accretion, terrane accretion, and continental collision at continental margins, in association with plate subduction. These processes result in the formation of large mountain belts, the building up of which literally grows the continents. However, these tectonic aspects are concerned with material recycling within the crust, and hence do not contribute to volumetric growth of continental crust. Igneous processes concern separation of continental crust from the mantle and result in the volumetric growth of continental crust. Therefore, the main focus of this book is to systematically examine why and how the Earth's continental crust forms, by evaluating magmatic processes at island arcs where new continental crust forms.
How does it happen that billions of stars can cooperate to produce the beautiful spirals that characterize so many galaxies, including ours? This book reviews the history behind the discovery of spiral galaxies and the problems faced when trying to explain the existence of spiral structure within them. In the book, subjects such as galaxy morphology and structure are addressed as well as several models for spiral structure. The evidence in favor or against these models is discussed. The book ends by discussing how spiral structure can be used as a proxy for other properties of spiral galaxies, such as their dark matter content and their central supermassive black hole masses, and why this is important.
In tropical latitudes, monsoons trigger regimes of strong seasonal rainfall over the continents. Over the West African region, the rainfall has shown a strong variability from interannual to decadal time scales. The atmospheric response to global sea surface temperatures is the leading cause of rainfall variability in the West African Sahel. This thesis explores changes in the leading ocean forcing of Sahelian rainfall interannual variability. It anaylzes the dynamical mechanisms at work to explain the non-stationary sea surface temperature-forced response of anomalous rainfall. The underlying multidecadal sea surface temperature background is raised as a key factor that favors some interannual teleconnections and inhibits others. Results of this thesis are relevant for improving the seasonal predictability of summer rainfall in the Sahel.
The application of methodological approaches and mathematical formalisms proper to Physics and Engineering to investigate and describe biological processes and design biological structures has led to the development of many disciplines in the context of computational biology and biotechnology. The best known applicative domain is tissue engineering and its branches. Recent domains of interest are in the field of biophysics, e.g.: multiscale mechanics of biological membranes and films and filaments; multiscale mechanics of adhesion; biomolecular motors and force generation. Modern hypotheses, models, and tools are currently emerging and resulting from the convergence of the methods and phylosophycal apporaches of the different research areas and disciplines. All these emerging approaches share the purpose of disentangling the complexity of organisms, tissues, and cells and mimiking the function of living systems. The contributions presented in this book are current research highlights of six challenging and representative applicative domains of phyisical, engineering, and computational approaches in medicine and biology, i.e tissue engineering, modelling of molecular structures, cell mechanics and cell adhesion processes, cancer physics, and physico-chemical processes of metabolic interactions. Each chapter presents a compendium or a review of the original results achieved by authors in the last years. Furthermore, the book also wants to pinpoint the questions that are still open and that could propel the future research.
Titanium dioxide photocatalysis is based on the semiconducting nature of its anatase crystal type. Construction materials with titanium photocatalyst show performances of air purification, self-cleaning, water purification, antibacterial action. This book describes principles of titanium dioxide photocatalysis, its applications to cementitious and noncementitious materials, as well as an overview of standardization of testing methods.
Nature is characterized by a number of physical laws and fundamental dimensionless couplings. These determine the properties of our physical universe, from the size of atoms, cells and mountains to the ultimate fate of the universe as a whole. Yet it is rather remarkable how little we know about them. The constancy of physical laws is one of the cornerstones of the scientific research method, but for fundamental couplings this is an assumption with no other justification than a historical assumption. There is no 'theory of constants' describing their role in the underlying theories and how they relate to one another or how many of them are truly fundamental. Studying the behaviour of these quantities throughout the history of the universe is an effective way to probe fundamental physics. This explains why the ESA and ESO include varying fundamental constants among their key science drivers for the next generation of facilities. This symposium discussed the state-of-the-art in the field, as well as the key developments anticipated for the coming years.
EPR of Free Radicals in Solids: Trends in Methods and Applications, 2nd ed. presents a critical two volume review of the methods and applications of EPR (ESR) for the study of free radical processes in solids. Emphasis is on the progress made in the developments in EPR technology, in the application of sophisticated matrix isolation techniques and in the advancement in quantitative EPR that have occurred since the 1st edition was published. Improvements have been made also at theoretical level, with the development of methods based on first principles and their application to the calculation of magnetic properties as well as in spectral simulations. EPR of Free Radicals in Solids II focuses on the trends in applications of experimental and theoretical methods to extract structural and dynamical properties of radicals and spin probes in solid matrices by continuous wave (CW) and pulsed techniques in nine chapters written by experts in the field. It examines the studies involving radiation- and photo-induced inorganic and organic radicals in inert matrices, the high-spin molecules and metal-based molecular clusters as well as the radical pro-cesses in photosynthesis. Recent advancements in environmental applications in-cluding measurements by myon resonance of radicals on surfaces and by quantitative EPR in dosimetry are outlined and the applications of optical detection in material research with much increased sensitivity reviewed. The potential use of EPR in quantum computing is considered in a newly written chapter. This new edition is aimed to experimentalists and theoreticians in research involving free radicals, as well as for students of advanced courses in physical chemis-try, chemical physics, materials science, biophysics, biochemistry and related fields.
This book provides an introduction to design of biomedical optical imaging technologies and their applications. The main topics include: fluorescence imaging, confocal imaging, micro-endoscope, polarization imaging, hyperspectral imaging, OCT imaging, multimodal imaging and spectroscopic systems. Each chapter is written by the world leaders of the respective fields, and will cover: principles and limitations of optical imaging technology, system design and practical implementation for one or two specific applications, including design guidelines, system configuration, optical design, component requirements and selection, system optimization and design examples, recent advances and applications in biomedical researches and clinical imaging. This book serves as a reference for students and researchers in optics and biomedical engineering.
The invention of the semiconductor laser along with silica glass fiber has enabled an incredible revolution in global communication infrastructure of direct benefit to all. Development of devices and system concepts that exploit the same fundamental light-matter interaction continues. Researchers and technologists are pursuing a broad range of emerging applications, everything from automobile collision avoidance to secure quantum key distribution. This book sets out to summarize key aspects of semiconductor laser device physics and principles of laser operation. It provides a convenient reference and essential knowledge to be understood before exploring more sophisticated device concepts. The contents serve as a foundation for scientists and engineers, without the need to invest in specialized detailed study. Supplementary material in the form of MATLAB is available for numerically generated figures.
This volume presents the state-of-the-art in selected topics across modern nuclear physics, covering fields of central importance to research and illustrating their connection to many different areas of physics. It describes recent progress in the study of superheavy and exotic nuclei, which is pushing our knowledge to ever heavier elements and neutron-richer isotopes. Extending nuclear physics to systems that are many times denser than even the core of an atomic nucleus, one enters the realm of the physics of neutron stars and possibly quark stars, a topic that is intensively investigated with many ground-based and outer-space research missions as well as numerous theoretical works. By colliding two nuclei at very high ultra-relativistic energies one can create a fireball of extremely hot matter, reminiscent of the universe very shortly after the big bang, leading to a phase of melted hadrons and free quarks and gluons, the so-called quark-gluon plasma. These studies tie up with effects of crucial importance in other fields. During the collision of heavy ions, electric fields of extreme strength are produced, potentially destabilizing the vacuum of the atomic physics system, subsequently leading to the decay of the vacuum state and the emission of positrons. In neutron stars the ultra-dense matter might support extremely high magnetic fields, far beyond anything that can be produced in the laboratory, significantly affecting the stellar properties. At very high densities general relativity predicts the stellar collapse to a black hole. However, a number of current theoretical activities, modifying Einstein's theory, point to possible alternative scenarios, where this collapse might be avoided. These and related topics are addressed in this book in a series of highly readable chapters. In addition, the book includes fundamental analyses of the practicalities involved in transiting to an electricity supply mainly based on renewable energies, investigating this scenario less from an engineering and more from a physics point of view. While the topics comprise a large scope of activities, the contributions also show an extensive overlap in the methodology and in the analytical and numerical tools involved in tackling these diverse research fields that are the forefront of modern science.
Volume 37 is concerned with the use and role of modelling in
chemical kinetics and seeks to show the interplay of theory or
simulation with experiment in a diversity of physico-chemical areas
in which kinetics measurements provide significant physical
insight. Areas of application covered within the volume include
electro- and interfacial chemistry, physiology, biochemistry, solid
state chemistry and chemical engineering.
After an insightful introductory part on recent developments in the thermodynamics of small systems, the author presents his contribution to a long-standing problem, namely the connection between irreversibility and dissipation. He develops a method based on recent results on fluctuation theorems that is able to estimate dissipation using only information acquired in a single, sufficiently long, trajectory of a stationary nonequilibrium process. This part ends with a remarkable application of the method to the analysis of biological data, in this case, the fluctuations of a hair bundle. The third part studies the energetics of systems that undergo symmetry breaking transitions. These theoretical ideas lead to, among other things, an experimental realization of a Szilard engine using manipulated colloids. This work has the potential for important applications ranging from the analysis of biological media to the design of novel artificial nano-machines.
This book contains contributions to the 32nd Polish-Czech-Slovak Symposium on Mining and Environmental Geophysics held in May 2009 in Piechowice (Poland). The papers are related to various aspects of geophysical science such as induced seismicity, engineering seismology, environmental geophysics and geophysics in geology
This monograph is the last volume in the series 'Acoustic and
Elastic
This thesis develops and establishes several methods to determine the detailed geometric architecture of transiting exoplanetary systems (planets orbiting around, and periodically passing in front of, stars other than the sun) using high-precision photometric data collected by the Kepler space telescope. It highlights the measurement of stellar obliquity - the tilt of the stellar equator with respect to the planetary orbital plane(s) - and presents methods for more precise obliquity measurements in individual systems of particular interest, as well as for measurements in systems that have been out of reach of previous methods. Such information is useful for investigating the dynamical evolution of the planetary orbit, which is the key to understanding the diverse architecture of exoplanetary systems. The thesis also demonstrates a wide range of unique applications of high-precision photometric data, which expand the capability of future space-based photometry.
This thesis addresses fundamental scientific questions such as: How are complex natural products synthesized in vivo? Can we replicate these conditions in a laboratory environment? What is the biological function of such secondary metabolites? What are the biological origins of chirality? These issues are explored in an accessible manner using a multidisciplinary approach spanning chemistry, biology and physics to investigate an interesting family of complex natural products isolated from marine molluscs - the tridachiahydropyrones. The work has achieved: Elegant biomimetic syntheses of a number of the tridachiahydropyrone compounds in vitro using organic synthesis techniques The characterization of the interactions between these compounds and a range of model membrane systems using a series of fluorescence spectroscopic studies The investigation of the antioxidant and photoprotective properties of the compounds by means of biophysical assay techniques The synthesis of tridachiahydropyrone utilizing the model membrane systems as biomimetic reaction media.
The author argues that, after five decades of debate about the interactive of solar wind with the magnetosphere, it is time to get back to basics. Starting with Newton's law, this book also examines Maxwell's equations and subsidiary equations such as continuity, constitutive relations and the Lorentz transformation; Helmholtz' theorem, and Poynting's theorem, among other methods for understanding this interaction.
This book presents high-performance data transmission over plastic optical fibers (POF) using integrated optical receivers having good properties with multilevel modulation, i.e. a higher sensitivity and higher data rate transmission over a longer plastic optical fiber length. Integrated optical receivers and transmitters with high linearity are introduced for multilevel communication. For binary high-data rate transmission over plastic optical fibers, an innovative receiver containing an equalizer is described leading also to a high performance of a plastic optical fiber link. The cheap standard PMMA SI-POF (step-index plastic optical fiber) has the lowest bandwidth and the highest attenuation among multimode fibers. This small bandwidth limits the maximum data rate which can be transmitted through plastic optical fibers. To overcome the problem of the plastic optical fibers high transmission loss, very sensitive receivers must be used to increase the transmitted length over POF. The plastic optical fiber limited bandwidth problem can be decreased by using multilevel signaling like multilevel pulse amplitude modulation or by using an equalizer for binary data transmission.
"Advances in Imaging and Electron Physics "merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy."
This book presents the fundamental physics of optical interferometry as applied to biophysical, biological and medical research. Interference is at the core of many types of optical detection and is a powerful probe of cellular and tissue structure in interfererence microscopy and in optical coherence tomography. It is also the root cause of speckle and other imaging artefacts that limit range and resolution. For biosensor applications, the inherent sensitivity of interferometry enables ultrasensitive detection of molecules in biological samples for medical diagnostics. In this book, emphasis is placed on the physics of light scattering, beginning with the molecular origins of refraction as light propagates through matter, and then treating the stochastic nature of random fields that ultimately dominate optical imaging in cells and tissue. The physics of partial coherence plays a central role in the text, with a focus on coherence detection techniques that allow information to be selectively detected out of incoherent and heterogeneous backgrounds. Optical Interferometry for Biology and Medicine is divided into four sections. The first covers fundamental principles, and the next three move up successive scales, beginning with molecular interferometry (biosensors), moving to cellular interferometry (microscopy), and ending with tissue interferometry (biomedical). An outstanding feature of the book is the clear presentation of the physics, with easy derivations of the appropriate equations, while emphasizing "rules of thumb" that can be applied by experimental researchers to give semi-quantitative predictions.
The versatile and available GNSS signals can detect the Earth's surface environments as a new, highly precise, continuous, all-weather and near-real-time remote sensing tool. This book presents the theory and methods of GNSS remote sensing as well as its applications in the atmosphere, oceans, land and hydrology. Ground-based atmospheric sensing, space-borne atmospheric sensing, reflectometry, ocean remote sensing, hydrology sensing as well as cryosphere sensing with the GNSS will be discussed per chapter in the book.
Modern Earth System Monitoring represents a fundamental change in the way scientists study the Earth System. In Oceanography, for the past two centuries, ships have provided the platforms for observing. Expeditions on the continents and Earth's poles are land-based analogues. Fundamental understanding of current systems, climate, natural hazards, and ecosystems has been greatly advanced. While these approaches have been remarkably successful, the need to establish measurements over time can only be made using Earth observations and observatories with exacting standards and continuous data. The 19 peer-reviewed contributions in this volume provide early insights into this emerging view of Earth in both space and time in which change is a critical component of our growing understanding.
Synchrotron radiation sources are now used routinely by thousands of research scientists and engineers throughout the world to perform experiments in biology, physics, materials science, chemistry and so on. The very best of these sources are based upon the use of undulator and wiggler insertion devices that can enhance the intensity of the radiation by many orders of magnitude. This book, which is part of the Oxford Series on Synchrotron Radiation, brings together both a detailed step by step description of the radiation properties from these devices as well as an explanation of the practical realization of actual devices using available magnet technologies. The book is aimed at not just the users but also the providers of synchrotron radiation. It takes the reader through the fundamental issues, and provides sufficient depth so as to be an indispensable reference to light source designers, accelerator physicists and insertion device specialists. The approach taken is to provide the reader with all of the essential information and to back this up with practical examples and illustrations wherever possible. |
You may like...
Protein and Peptide-based Microarrays…
Navid Rabiee, Michael R. Hamblin
Paperback
R746
Discovery Miles 7 460
The Arctic - A Barometer of Global…
Neloy Khare, Rajni Khare
Paperback
R2,821
Discovery Miles 28 210
Everyday Applied Geophysics 2…
Nicolas Florsch, Frederic Muhlach, …
Hardcover
The Geological Interpretation of Well…
M.H. Rider, Martin Kennedy
Paperback
R1,573
Discovery Miles 15 730
High-Density Sequencing Applications in…
Agamemnon J. Carpousis
Hardcover
R4,329
Discovery Miles 43 290
|