![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics
Taking the Temperature of the Earth: Steps towards Integrated Understanding of Variability and Change presents an integrated, collaborative approach to observing and understanding various surface temperatures from a whole-Earth perspective. The book describes the progress in improving the quality of surface temperatures across different domains of the Earth's surface (air, land, sea, lakes and ice), assessing variability and long-term trends, and providing applications of surface temperature data to detect and better understand Earth system behavior. As cooperation is essential between scientific communities, whose focus on particular domains of Earth's surface and on different components of the observing system help to accelerate scientific understanding and multiply the benefits for society, this book bridges the gap between domains.
The Asian Summer Monsoon: Characteristics, Variability, Teleconnections and Projection focuses on the connections between the Indian Summer and East Asian Summer Monsoons, also including the South China Sea Summer Monsoon. While these systems have profound differences, their interactions have significant impacts on the climatic regimes in the region and throughout the world. In summer, the ASM engine pumps moisture transported across thousands of miles from the Indian and Pacific Oceans to the monsoon regions, producing heavy rains over south and east Asia and its adjacent marginal seas. This book reviews the different subsystems and their impact, providing guidance to enhance prediction models.
This book is an introduction to the mechanical properties, the force generating capacity, and the sensitivity to mechanical cues of the biological system. To understand how these qualities govern many essential biological processes, we also discuss how to measure them. However, before delving into the details and the techniques, we will first learn the operational definitions in mechanics, such as force, stress, elasticity, viscosity and so on. This book will explore the mechanics at three different length scales - molecular, cellular, and tissue levels - sequentially, and discuss the measurement techniques to quantify the intrinsic mechanical properties, force generating capacity, mechanoresponsive processes in the biological systems, and rupture forces.
Model Ecosystems in Extreme Environments, Second Edition examines ecosystems at the most extreme habitats and their interaction with the environment, providing a key element in our understanding of the role and function of microorganisms in nature. The book highlights current topics in the field, such as biodiversity and the structure of microbial communities in extreme environments, the effects of extreme environmental conditions on microbial ecosystems, and ecological and evolutionary interactions in extreme environments, among other topics. It will be a valuable text for faculty and students working with extremophiles and/or microbial ecology and researchers, including astrobiologists, biologists, evolutionary scientists, astronomers, geochemists and oceanographers.
Nanomedicine is a developing field, which includes different disciplines such as material science, chemistry, engineering and medicine devoted to the design, synthesis and construction of high-tech nanostructures. The ability of these structures to have their chemical and physical properties tuned by structural modification, has allowed their use in drug delivery systems, gene therapy delivery, and various types of theranostic approaches. Colloidal noble metal nanoparticles and other nanostructures have many therapeutic and diagnostic applications. The concept of drug targeting as a magic bullet has led to much research in chemical modification to design and optimize the binding to targeted receptors. It is important to understand the precise relationship between the drug and the carrier and its ability to target specific tissues, and pathogens to make an efficient drug delivery system. This book covers advances based on different drug delivery systems: polymeric and hyper branched nanomaterials, carbon-based nanomaterials, nature-inspired nanomaterials, and pathogen-based carriers.
Fundamentals of Bioaerosols Science: From Physical to Biological Dimensions for Airborne Biological Particles discusses the physical science and biological dimensions of bioaerosols science. Physical scientists are often unfamiliar with biological aspects of bioaerosols science (e.g., molecular biology, PCR, DNA sequencing, and so on), while biologists are often unfamiliar with physical aspects of bioaerosols science (e.g., aerosol science, air sampling, aerodynamic diameter, and so on). This book covers the physical properties of bioaerosols, sampling and monitoring methods, control technologies, and impacts on climate. It is primarily for graduate students, researchers and professors who have non-biology (e.g., physical, chemical, or engineering) backgrounds, such as meteorology, Earth science, atmospheric science, climate science, and more.
Small Angle X-Ray and Neutron Scattering with Applications to Geomaterials provides techniques for the analysis of geomaterials, which is of great significance for humans because geomaterials are related to earthquake, resource development, underground spaces, carbon dioxide storage, and more. The book introduces the fundamental theory of small angle X-ray and neutron scattering and covers pore accessibility characterization for natural rocks from four aspects, including quantitative evaluation of pore structure heterogeneity and anisotropy, quantification of pore modification in coals due to pulverization, estimation and modeling of coal pore accessibility, and nanoscale coal deformation and alteration of porosity and pore orientation under uniaxial compression. Finally, interactions between pore structures and fluid behaviors in geomaterials are introduced, along with the connections between small-angle scattering and other techniques (NMR cytophotometry, Transmission Electron Microscopy and synchrotron radiation SAXS and nano-CT) described.
The author is ready to assert that practically none of the readers of this book will ever happen to deal with large doses of radiation. But the author, without a shadow of a doubt, claims that any readers of this book, regardless of gender, age, financial situation, type of professional activity, and habits, are actually exposed to low doses of radiation throughout their life. This book is devoted to the effect of small doses on the body. To understand the basic effects of radiation on humans, the book contains the necessary information from an atomic, molecular and nuclear physics, as well as from biochemistry and biology. Special attention is paid to the issues that are either not considered or discussed very briefly in existing literature. Examples include the ionization of inner atomic shells that play an essential role in radiological processes, and the questions of transformation of the energy of ionizing radiation in matter. The benefits of ionizing radiation to mankind is reflected in a wide range of radiation technologies used in science, industry, agriculture, culture, art, forensics, and, what is the most important application, medicine. Radiation: Fundamentals, Applications, Risks and Safety provides information on the use of radiation in modern life, its usefulness and indispensability. Experiments on the effects of small doses on bacteria, fungi, algae, insects, plants and animals are described. Human medical experiments are inhuman and ethically flawed. However, during the familiarity of mankind with ionizing radiation, a large number of population groups were subject to accumulation, exposed to radiation at doses of small but exceeding the natural background radiation. This book analyzes existing, real-life radiation results from survivors of Hiroshima and Nagasaki, Chernobyl and Fukushima, and examines studies of radiation effect on patients, radiologists, crews of long-distant flights and astronauts, on miners of uranium copies, on workers of nuclear industry and on militaries, exposed to ionizing radiation on a professional basis, and on the population of the various countries receiving environmental exposure. The author hopes that this book can mitigate the impact of radiation phobia, which prevails in the public consciousness over the last half century.
This book begins with the history and fundamentals of optical fiber communications. Then, briefly introduces existing optical multiplexing techniques and finally focuses on spatial domain multiplexing (SDM), aka space division multiplexing, and orbital angular momentum of photon based multiplexing. These are two emerging multiplexing techniques that have added two new degrees of photon freedom to optical fibers.
'If you feel you are in a black hole, don't give up. There's a way out' What is inside a black hole? Is time travel possible? Throughout his extraordinary career, Stephen Hawking expanded our understanding of the universe and unravelled some of its greatest mysteries. In What Is Inside a Black Hole? Hawking takes us on a journey to the outer reaches of our imaginations, exploring the science of time travel and black holes. 'The best most mind-bending sort of physics' The Times Brief Answers, Big Questions: this stunning paperback series offers electrifying essays from one of the greatest minds of our age, taken from the original text of the No. 1 bestselling Brief Answers to the Big Questions.
The Nutritional Biochemistry of Chromium(III), Second Edition, reviews the fields of chromium biochemistry and nutrition and how they have dramatically changed in the last decade. Editor John Vincent has lead much of the research that has resulted in new discoveries and reversals of previously held beliefs, such as health concerns surrounding the toxicity of chromium(III). New sections include a review of new evidence showing why chromium may not be an essential element, why national recommendations may need updating, and new data on the use of chromium supplementation in animal feeds. Discussions on the controversial topic of the role of chromium(III) at the molecular level in insulin signaling and information on cell cultures and in vitro assays of chromium toxicity are also covered.
Parameter Estimation and Inverse Problems, Third Edition, is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who do not have an extensive mathematical background. The book is complemented by a companion website that includes MATLAB codes that correspond to examples that are illustrated with simple, easy to follow problems that illuminate the details of particular numerical methods. Updates to the new edition include more discussions of Laplacian smoothing, an expansion of basis function exercises, the addition of stochastic descent, an improved presentation of Fourier methods and exercises, and more.
Coastal Wetlands, Second Edition: An Integrated and Ecosystem Approach provides an understanding of the functioning of coastal ecosystems and the ecological services that they provide. As coastal wetlands are under a great deal of pressure from the dual forces of rising sea levels and the intervention of human populations, both along the estuary and in the river catchment, this book covers important issues, such as the destruction or degradation of wetlands from land reclamation and infrastructures, impacts from the discharge of pollutants, changes in river flows and sediment supplies, land clearing, and dam operations.
Primitive Meteorites and Asteroids: Physical, Chemical, and Spectroscopic Observations Paving the Way to Exploration covers the physical, chemical and spectroscopic aspects of asteroids, providing important data and research on carbonaceous chondrites and primitive meteorites. This information is crucial to the success of missions to parent bodies, thus contributing to an understanding of the early solar system. The book offers an interdisciplinary perspective relevant to many fields of planetary science, as well as cosmochemistry, planetary astronomy, astrobiology, geology and space engineering. Including contributions from planetary and missions scientists worldwide, the book collects the fundamental knowledge and cutting-edge research on carbonaceous chondrites and their parent bodies into one accessible resource, thus contributing to the future of space exploration.
Advances in Nano and Biochemistry: Environmental and Biomedical Applications gives insights into this advanced interdisciplinary science that encompasses the principles of physics and physical chemistry for the investigation of various processes and problems in biological systems. The book is a concise culmination of biophysical chemistry knowledge acquired through core concepts and advanced technologies for addressing emerging challenges in environmental and biomedical applications. Sections cover early diagnostic techniques and accurate treatment strategies using bioinspired, sustainable technologies, including nanomaterials, nanoenzymes, biopolymers, electrochemical biomolecule sensors, biocompatible magnetic nanomaterials, quantum dots and hybrid structures, and DNA nanotechnology. Other sections discuss advanced technologies for sensing and remedying environmental pollutants, including but not limited to, photocatalytic oxidations, gum polysaccharides based nanostructured materials, bio-inspired and biocompatible nanomaterials, hydrogel nanocomposites, and contemporary enzymes and nanozymes basedtechnologies. Ultimately, the state-of-the-art chapters in this book will empower researchers to combine two complementary elements - chemical analysis use and biomedical applications.
In this book, cancer theranostics applications of magnetic iron oxide nanoparticles are overviewed in details. Moreover, their synthesis, characterization, multifunctionality, disease targeting, biodistribution, pharmacokinetics and toxicity have been briefly highlighted. Finally, we have mentioned the current examples of clinical trials of magnetic nanoparticles in cancer theranostics along with their future scopes and challenges.
The world of single-board computing puts powerful coding tools in the palm of your hand. The portable Raspberry Pi computing platform with the power of Linux yields an exciting exploratory tool for beginning scientific computing. Science and Computing with Raspberry Pi takes the enterprising researcher, student, or hobbyist through explorations in a variety of computing exercises with the physical sciences. The book has tutorials and exercises for a wide range of scientific computing problems while guiding the user through: Configuring your Raspberry Pi and Linux operating system Understanding the software requirements while using the Pi for scientific computing Computing exercises in physics, astronomy, chaos theory, and machine learning
Magmas under Pressure: Advances in High-Pressure Experiments on Structure and Properties of Melts summarizes recent advances in experimental technologies for studying magmas at high pressures. In the past decade, new developments in high-pressure experiments, particularly with synchrotron X-ray techniques, have advanced the study of magmas under pressure. These new experiments have revealed significant changes of structure and physical properties of magmas under pressure, which significantly improves our understanding of the behavior of magmas in the earth's interior. This book is an important reference, not only in the earth and planetary sciences, but also in other scientific fields, such as physics, chemistry, material sciences, engineering and in industrial applications, such as glass formation and metallurgical processing.
Smart, Resilient and Transition Cities: Emerging Approaches and Tools for Climate-Sensitive Urban Development starts with a presentation of three widespread Urban Metaphors, which are gaining increasing attention from urban planners and decision-makers: Smart City, Resilient City and Transition Towns, being all of them focused on the need for enhancing cities' capacities to cope with the multiple and heterogeneous challenges threatening contemporary cities and their future development and, above all, with climate issues. Then, the Authors provide an overview of current large-scale and urban strategies to counterbalance climate change so far undertaken in different geographical contexts (Europe, United States, China, Africa and Australia), shedding light on the different approaches, on the different weights assigned to mitigation and adaptation issues as well as on the main barriers hindering their effectiveness and translation into measurable outcomes. Opportunities and criticalities arising from the rich, 'sprawled' and 'blurred' landscape of current strategies and initiatives in the face of climate change pave the way to a discussion on the lessons learnt from current initiatives and provide new hints for developing integrated climate strategies, capable to guide planners and decision makers towards a climate sensitive urban development Smart, Resilient and Transition Cities: Emerging Approaches and Tools for Climate-Sensitive Urban Development merges a scientific approach with a pragmatic one. Through a case study approach, the Authors explore strengths and weaknesses of institutional and informal practices to foreshadow innovative paths for an adaptive process of urban governance in the face of climate change. The book guides the reader along new governance paths, characterized by continuous learning and close cooperation and communication among different actors and stakeholders and, in so doing, helps them to overcome current 'siloed' approaches to climate issues.
Structure and Intrinsic Disorder in Enzymology offers a direct, yet comprehensive presentation of the fundamental concepts, characteristics and functions of intrinsically disordered enzymes, along with valuable notes and technical insights powering new research in this emerging field. Here, more than twenty international experts examine protein flexibility and cryo-enzymology, hierarchies of intrinsic disorder, methods for measurement of disorder in proteins, bioinformatics tools for predictions of structure, disorder and function, protein promiscuity, protein moonlighting, globular enzymes, intrinsic disorder and allosteric regulation, protein crowding, intrinsic disorder in post-translational, and much more. Chapters also review methods for study, as well as evolving technology to support new research across academic, industrial and pharmaceutical labs.
"Advances in Imaging and Electron Physics "merges two long-running serials--"Advances in Electronics and Electron Physics" and "Advances in Optical and Electron Microscopy." This series features extended articles on the physics of
electron devices (especially semiconductor devices), particle
optics at high and low energies, microlithography, image science
and digital image processing, electromagnetic wave propagation,
electron microscopy, and the computing methods used in all these
domains. |
You may like...
Handbook of Hormones - Comparative…
Hironori Ando, Kazuyoshi Ukena, …
Paperback
R5,129
Discovery Miles 51 290
High-Density Sequencing Applications in…
Agamemnon J. Carpousis
Hardcover
R4,329
Discovery Miles 43 290
The Arctic - A Barometer of Global…
Neloy Khare, Rajni Khare
Paperback
R2,821
Discovery Miles 28 210
Everyday Applied Geophysics 2…
Nicolas Florsch, Frederic Muhlach, …
Hardcover
|