![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics
Basics of Computational Geophysics provides a one-stop, collective resource for practitioners on the different techniques and models in geoscience, their practical applications, and case studies. The reference provides the modeling theory in an easy-to-read format that is verified with onsite models for specific regions and scenarios, including the use of big data and artificial intelligence. This book offers a platform whereby readers will learn theory, practical applications, and the comparison of real-world problems surrounding geomechanics, modeling and optimizations.
Enzyme Active Sites and their Reaction Mechanisms provides a one-stop reference on how enzymes "work." Here, Dr. Harry Morrison, PhD and Professor Emeritus at Purdue University, provides a detailed overview of the origin and function of forty enzymes, the chemical details of their active sites, their mechanisms of action, and associated cofactors. The enzymes featured highlight a step forward, along with possible areas of application, thus supporting new research in academic and industrial labs. Each chapter is written in a clear format, including a brief summary of enzyme function and structure, a detailed description of their mechanisms of action and associated co-factors.
The Boundary Element Method for Engineers and Scientists: Theory and Applications is a detailed introduction to the principles and use of boundary element method (BEM), enabling this versatile and powerful computational tool to be employed for engineering analysis and design. In this book, Dr. Katsikadelis presents the underlying principles and explains how the BEM equations are formed and numerically solved using only the mathematics and mechanics to which readers will have been exposed during undergraduate studies. All concepts are illustrated with worked examples and problems, helping to put theory into practice and to familiarize the reader with BEM programming through the use of code and programs listed in the book and also available in electronic form on the book's companion website.
Galileo's groundbreaking dialogues are a summation of three decades of scientific work he had undertaken in the fledgling field of physics. This edition includes the diagrams crucial for understanding the text. Writing these dialogues in 1638, the elderly Galileo had a life of achievements behind him. Despite attempts at suppression of his writings by the Roman Inquisition, his ideas were successfully communicated across Europe. The motion of objects and resistance to such motion, the concept of velocity, and the laws of gravity are merely a few of the topics covered in these detailed dialogues. At the outset, we are introduced to the three conversation partners: Salviati, Sagredo and Simplicio. These three Venetians embark on a scientific discussion, hoping to explain the curiosities of things such as speed and movement. Over the course of four days, their meetings grow in complexity and scope as they strive to explain physical phenomena.
Satellite Gravimetry and the Solid Earth: Mathematical Foundations presents the theories behind satellite gravimetry data and their connections to solid Earth. It covers the theory of satellite gravimetry and data analysis, presenting it in a way that is accessible across geophysical disciplines. Through a discussion of satellite measurements and the mathematical concepts behind them, the book shows how various satellite measurements, such as satellite orbit, acceleration, vector gravimetry, gravity gradiometry, and integral energy methods can contribute to an understanding of the gravity field and solid Earth geophysics. Bridging the gap between geodesy and geophysics, this book is a valuable resource for researchers and students studying gravity, gravimetry and a variety of geophysical and Earth Science fields.
Geological Controls for Gas Hydrate Formations and Unconventionals tells the story of unconventional hydrocarbon resources, especially gas hydrates, tight gas, shale gas, liquid- rich shale, and shale oil, to future generations. It presents the most current research in unconventionals, covering structural constituents of continental margins and their role in generating hydrocarbons. Additionally, this book answers basic questions regarding quantifications and characterizations, distributions, modes of occurrence, physical and chemical properties, and more - in essence, all the information that is necessary to improve the models for precision prediction of the enigma of gas hydrates and other unconventionals. Blending geology, geophysics, geomechanics, petrophysics, and reservoir engineering, it explains in simple language the scientific concepts that are necessary to develop geological and reservoir models for unconventionals. Serving as a focal point for geoscientists and engineers conducting research that focuses on reservoir characteristics of unconventionals, Geological Controls for Gas Hydrate Formations and Unconventionals is a useful resource for a variety of other specialiststies including physicists, geochemists, exploration geologists, and petroleum and reservoir engineers. It details the key factors for successful exploration and development of unconventional reservoirs including discovery, data evaluation, full-field development, production, and abandonment, along with a vivid description ofn the worldwide occurrence of unconventional hydrocarbons.
Plants offer some of the most elegant applications of soft matter principles in Nature. Understanding the interplay between chemistry, physics, biology, and fluid mechanics is critical to forecast plant behaviour, which is necessary for agriculture and disease management. It also provides inspiration for novel engineering applications. Starting with fundamental concepts around plant biology, physics of soft matter and viscous fluids, readers of this book will be given a cross-disciplinary and expert grounding to the field. The book covers local scale aspects, such as cell and tissue mechanics, to regional scale matters covering movement, tropism, roots, through to global scale topics around fluid transport. Focussed chapters on water stress, networks, and biomimetics provide the user with a concise and complete introduction. Edited by internationally recognised leading experts in this field with contributions from key investigators worldwide, this book is the first introduction to the subject matter and will be suitable for both physical and life science readers.
A comprehensive handbook on state-of-the-art DAS technology and applications Distributed Acoustic Sensing (DAS) is a technology that records sound and vibration signals along a fiber optic cable. Its advantages of high resolution, continuous, and real-time measurements mean that DAS systems have been rapidly adopted for a range of applications, including hazard mitigation, energy industries, geohydrology, environmental monitoring, and civil engineering. Distributed Acoustic Sensing in Geophysics: Methods and Applications presents experiences from both industry and academia on using DAS in a range of geophysical applications. Volume highlights include: DAS concepts, principles, and measurements Comprehensive review of the historical development of DAS and related technologies DAS applications in hydrocarbon, geothermal, and mining industries DAS applications in seismology DAS applications in environmental and shallow geophysics The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
The growing number of scientific and technological applications of plasma physics in the field of Aerospace Engineering requires that graduate students and professionals understand their principles. This introductory book is the expanded version of class notes of lectures I taught for several years to students of Aerospace Engineering and Physics. It is intended as a reading guide, addressed to students and non-specialists to tackle later with more advanced texts. To make the subject more accessible the book does not follow the usual organization of standard textbooks in this field and is divided in two parts. The first introduces the basic kinetic theory (molecular collisions, mean free path, etc.) of neutral gases in equilibrium in connection to the undergraduate physics courses. The basic properties of ionized gases and plasmas (Debye length, plasma frequencies, etc.) are addressed in relation to their equilibrium states and the collisional processes at the microscopic level. The physical description of short and long-range (Coulomb) collisions and the more relevant collisions (elementary processes) between electrons' ions and neutral atoms or molecules are discussed. The second part introduces the physical description of plasmas as a statistical system of interacting particles introducing advanced concepts of kinetic theory, (non-equilibrium distribution functions, Boltzmann collision operator, etc). The fluid transport equations for plasmas of electron ions and neutral atoms and the hydrodynamic models of interest in space science and plasma technology are derived. The plasma production in the laboratory in the context of the physics of electric breakdown is also discussed. Finally, among the myriad of aerospace applications of plasma physics, the low pressure microwave electron multipactor breakdown and plasma thrusters for space propulsion are presented in two separate chapters.
Mechanobiology: From Molecular Sensing to Disease will provide a review of the current state of understanding of mechanobiology and its role in health and disease. It covers: Current understanding of the main molecular pathways by which cells sense and respond to mechanical stimuli, A review of diseases that with known or purported mechanobiological underpinnings; The role of mechanobiology in tissue engineering and regenerative medicine; Experimental methods to capture mechanobiological phenomena; Computational models in mechanobiology.
Protected Metal Clusters: From Fundamentals to Applications surveys the fundamental concepts and potential applications of atomically precise metal clusters protected by organic ligands. As this class of materials is now emerging as a result of breakthroughs in synthesis and characterization that have taken place over the last few years, the book provides the first reference with a focus on these exciting novel nanomaterials, explaining their formation, and how, and why, they play an important role in the future of molecular electronics, catalysis, sensing, biological imaging, and medical diagnosis and therapy.
Heat Transport and Energetics of the Earth and Rocky Planets provides a better understanding of the interior of the Earth by addressing the processes related to the motion of heat in large bodies. By addressing issues such as the effect of self-gravitation on the thermal state of the Earth, the effect of length-scales on heat transport, important observations of Earth, and a comparison to the behavior of other rocky bodies, readers will find clearly delineated discussions on the thermal state and evolution of the Earth. Using a combination of fundamentals, new developments and scientific and mathematical principles, the book summarizes the state-of-the-art. This timely reference is an important resource for geophysicists, planetary scientists, geologists, geochemists, and seismologists to gain a better understanding of the interior, formation and evolution of planetary bodies.
Understanding Faults: Detecting, Dating, and Modeling offers a single resource for analyzing faults for a variety of applications, from hazard detection and earthquake processes, to geophysical exploration. The book presents the latest research, including fault dating using new mineral growth, fault reactivation, and fault modeling, and also helps bridge the gap between geologists and geophysicists working across fault-related disciplines. Using diagrams, formulae, and worldwide case studies to illustrate concepts, the book provides geoscientists and industry experts in oil and gas with a valuable reference for detecting, modeling, analyzing and dating faults.
Active Geophysical Monitoring, Second Edition, presents a key method for studying time-evolving structures and states in the tectonically active Earth's lithosphere. Based on repeated time-lapse observations and interpretation of rock-induced changes in geophysical fields periodically excited by controlled sources, active geophysical monitoring can be applied to a variety of fields in geophysics, from exploration, to seismology and disaster mitigation. This revised edition presents the results of strategic systematic development and the application of new technologies. It demonstrates the impact of active monitoring on solid Earth geophysics, also delving into key topics, such as carbon capture and storage, geodesy, and new technological tools. This book is an essential for graduate students, researchers and practitioners across geophysics.
Leonhard Euler's Letters to a German Princess: A Milestone in the History of Physics Textbooks and More is a milestone in the history of physics textbooks and the instruction of women in the sciences. It also covers views of its author on epistemology, religion, and innovations in scientific equipment, including telescopes and microscopes. Today, 250 years later, we study this work of Euler's as a foundation for the history of physics teaching and analyze the letters from an historical and pedagogical point of view.
The compendium summarizes the seismic exploration history, geophysical exploration technology progress, application and exploration results of foreland basins and foreland thrust belts in central and western China.The volume highlights the latest progress and exploration results of theories and methods in foreland thrust belts such as Kuqa in Tarim basin, Yingxiongling in Qaidam basin and Longmenshan in Sichuan basin. The technologies presented, such as wide azimuth and high-density 3D seismic acquisition and processing technology, anisotropic depth domain seismic processing technology, theoretical multi-information comprehensive structural modeling technology, multi-dimensional data fracture detection technology, etc, are widely used in complex areas such as foreland thrust belt.This highly illustrated and readable reference text benefits professionals, researchers, teachers and graduate students majoring in oil and gas exploration and development.
Semi-Lagrangian Advection Methods and Their Applications in Geoscience provides a much-needed resource on semi-Lagrangian theory, methods, and applications. Covering a variety of applications, the book brings together developments of the semi-Lagrangian in one place and offers a comparison of semi-Lagrangian methods with Eulerian-based approaches. It also includes a chapter dedicated to difficulties of dealing with the adjoint of semi-Lagrangian methods and illustrates the behavior of different schemes for different applications. This allows for a better understanding of which schemes are most efficient, stable, consistent, and likely to introduce the minimum model error into a given problem. Beneficial for students learning about numerical approximations to advection, researchers applying these techniques to geoscientific modeling, and practitioners looking for the best approach for modeling, Semi-Lagrangian Advection Methods and Their Applications in Geoscience fills a crucial gap in numerical modeling and data assimilation in geoscience.
Extreme Hydroclimatic Events and Multivariate Hazards in a Changing Environment: A Remote Sensing Approach reviews multivariate hazards in a non-stationary environment, covering both short and long-term predictions from earth observations, along with long-term climate dynamics and models. The book provides a detailed overview of remotely sensed observations, current and future satellite missions useful for hydrologic studies and water resources engineering, and a review of hydroclimatic hazards. Given these tools, readers can improve their abilities to monitor, model and predict these extremes with remote sensing. In addition, the book covers multivariate hazards, like landslides, in case studies that analyze the combination of natural hazards and their impact on the natural and built environment. Finally, it ties hydroclimatic hazards into the Sendai Framework, providing another set of tools for reducing disaster impacts.
Advances in Geophysics, Volume 60, the latest release in this highly-respected publication in the field of geophysics, contains new chapters on a variety of topics, including Marchenko imaging, Fiber-optic sensing and distributed acoustic sensing, Diffractions, and Time-lapse interferometry across scales.
Geophysical Potential Fields: Geological and Environmental Applications, Volume Two, investigates the similarities and differences of potential geophysical fields, including gravity, magnetics, temperature, resistivity and self-potential, along with the influence of noise on these fields. As part of the Computational Geophysics series, this volume provides computational examples and methods for effectively solving geophysical problems in a full cycle manner. Including both quantitative and qualitative analysis, the book offers different filtering and transformation procedures, integrated analysis, and special interpretation methodologies, also presenting a developed 3D algorithm for combined modeling of gravity and magnetic fields in complex environments. The book also includes applications of the unified potential field system, such as studying deep structure, searching hydrocarbon and ore deposits, localizing buried water horizons and rockslide areas, tectono-structural mapping of water basins, and classifying archaeological targets. It is an ideal and unique resource for geophysicists, exploration geologists, archaeologists and environmental scientists.
Recent advances witness the potential to employ nanomedicine and game-changing methods to deliver drug molecules directly to diseased sites. To optimize and then enhance the efficacy and specificity, the control and guidance of drug carriers in vasculature has become crucial. Current bottlenecks in the optimal design of drug carrying particles are the lack of knowledge about the transport of particles, adhesion on endothelium wall and subsequent internalization into diseased cells. To study the transport and adhesion of particle in vasculature, the authors have made great efforts to numerically investigate the dynamic and adhesive motions of particles in the blood flow. This book discusses the recent achievements from the establishment of fundamental physical problem to development of multiscale model, and finally large scale simulations for understanding transport of particle-based drug carriers in blood flow.
In the field of astrophysics, modern developments of practice are emerging in order to further understand the spectral information derived from cosmic sources. Radio telescopes are a current mode of practice used to observe these occurrences. Despite the various accommodations that this technology offers, physicists around the globe need a better understanding of the underlying physics and operational components of radio telescopes as well as an explanation of the cosmic objects that are being detected. Analyzing the Physics of Radio Telescopes and Radio Astronomy is an essential reference source that discusses the principles of the astronomical instruments involved in the construction of radio telescopes and the analysis of cosmic sources and celestial objects detected by this machinery. Featuring research on topics such as electromagnetic theory, antenna design, and geometrical optics, this book is ideally designed for astrophysicists, engineers, researchers, astronomers, students, and educators seeking coverage on the operational methods of radio telescopes and understanding the physical processes of radio astronomy.
Taking the Temperature of the Earth: Steps towards Integrated Understanding of Variability and Change presents an integrated, collaborative approach to observing and understanding various surface temperatures from a whole-Earth perspective. The book describes the progress in improving the quality of surface temperatures across different domains of the Earth's surface (air, land, sea, lakes and ice), assessing variability and long-term trends, and providing applications of surface temperature data to detect and better understand Earth system behavior. As cooperation is essential between scientific communities, whose focus on particular domains of Earth's surface and on different components of the observing system help to accelerate scientific understanding and multiply the benefits for society, this book bridges the gap between domains.
The Asian Summer Monsoon: Characteristics, Variability, Teleconnections and Projection focuses on the connections between the Indian Summer and East Asian Summer Monsoons, also including the South China Sea Summer Monsoon. While these systems have profound differences, their interactions have significant impacts on the climatic regimes in the region and throughout the world. In summer, the ASM engine pumps moisture transported across thousands of miles from the Indian and Pacific Oceans to the monsoon regions, producing heavy rains over south and east Asia and its adjacent marginal seas. This book reviews the different subsystems and their impact, providing guidance to enhance prediction models. |
You may like...
The Bomber Mafia - A Story Set In War
Malcolm Gladwell
Paperback
(1)
History of the Indian Tribes of Hudson's…
Edward Manning Ruttenber
Paperback
R605
Discovery Miles 6 050
|