![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics
Breast MRI: State of the Art and Future Directions provides a comprehensive overview of the current applications of breast MRI, including abbreviated MRI, as well as presenting technical recommendations, practical implementation and associated challenges in clinical routine. In addition, the book introduces novel MRI techniques, multimodality imaging, and advanced image processing coupled with AI, reviewing their potential for impeding and future clinical implementation. This book is a complete reference on state-of-the-art breast MRI methods suitable for MRI researchers, radiographers and clinicians. Breast cancer is one of the leading causes of death among women with early detection being the key to improved prognosis and survival. Magnetic resonance imaging (MRI) of the breast is undisputedly the most sensitive imaging method to detect cancer, with a higher detection rate than mammography, digital breast tomosynthesis, and ultrasound.
Interpreting Subsurface Seismic Data presents recent advances in methodologies for seismic imaging and interpretation across multiple applications in geophysics including exploration, marine geology, and hazards. It provides foundational information for context, as well as focussing on recent advances and future challenges. It offers detailed methodologies for interpreting the increasingly vast quantity of data extracted from seismic volumes. Organized into three parts covering foundational context, case studies, and future considerations, Interpreting Subsurface Seismic Data offers a holistic view of seismic data interpretation to ensure understanding while also applying cutting-edge technologies. This view makes the book valuable to researchers and students in a variety of geoscience disciplines, including geophysics, hydrocarbon exploration, applied geology, and hazards.
All galaxies host a super-massive black hole in their center. These black holes grow their mass in symbiosis with their host galaxy and moderate their star formation. When matter is driven towards the nucleus, an accretion disk is formed to transfer angular momentum and considerable energy is released when the material falls into the black hole: this is the phenomenon of active galactic nuclei (AGN). A nucleus can shine one thousand times more brightly than the entire galaxy with its 200 billion stars. The nuclear activity can take many forms, from very powerful quasars to more ordinary Seyfert galaxies, passing by radio-galaxies, which eject a collimated plasma at ten times the radius of the galaxy.This book examines all of these manifestations and presents a unified view. When two galaxies merge, a binary black hole is formed and the two black holes will spiral inwards and merge, emitting long gravitational waves, which could be detected by the future LISA satellite.
Carbon Mineralization in Coastal Wetlands: From Litter Decomposition to Greenhouse Gas Dynamics fills the current knowledge gap in carbon mineralization, providing a balanced view of the carbon dynamics of coastal wetlands. This book provides a holistic treatment of carbon mineralization, from the contributions of litter/root decomposition pathways to carbon mineralization and the processes and sources of greenhouse gas production. This book compares carbon mineralization in coastal wetlands and highlights differences in carbon dynamics. As studies on blue carbon have strongly emphasized the storage potential of coastal wetlands, this book serves as an ideal resource on the topics discussed.
Advances in Microbial Physiology, Volume 150 in this important serial, highlights new advances in the field with this new volume including content by an international board of authors. Chapters in this new release include Organization of respiratory chains in the bacterial cell, Anaerobic methane oxidizing archaea, Dawn of the DedA: the structure and function of the DedA family of integral membrane proteins associated with bacterial viability and antimicrobial resistance, Nickel, an essential virulence determinant of Helicobacter pylori: trafficking pathways and their targeting by bismuth, Dissimilatory sulfur compounds oxidation in thermophilic and chemolithoautotrophic bacteria belonging to the Aquificales order, and much more.
Oral Delivery of Therapeutic Peptides and Proteins provides a complete overview of the journey scientists pursue to attain protein and peptide oral delivery. The book highlights the physiological challenges that must be accounted for in addition to overcoming protease inhibition and acid stability issues that are commonly mentioned in this area of research. Primary topics include formulation technologies being adopted for oral delivery of proteins and peptides, modification of actives to make them more suited for oral delivery, animal models and their shortcomings in assessing oral bioavailability, and in vitro models to simulate drug absorption and transport. Academics and industry researchers working in formulation development and researchers and advanced students in biotechnology and pharmacy will find this a useful resource.
Machine Learning for Planetary Science presents planetary scientists with a way to introduce machine learning into the research workflow as increasingly large nonlinear datasets are acquired from planetary exploration missions. The book explores research that leverages machine learning methods to enhance our scientific understanding of planetary data and serves as a guide for selecting the right methods and tools for solving a variety of everyday problems in planetary science using machine learning. Illustrating ways to employ machine learning in practice with case studies, the book is clearly organized into four parts to provide thorough context and easy navigation. The book covers a range of issues, from data analysis on the ground to data analysis onboard a spacecraft, and from prioritization of novel or interesting observations to enhanced missions planning. This book is therefore a key resource for planetary scientists working in data analysis, missions planning, and scientific observation.
Nonlinear Wave and Plasma Structures in the Auroral and Subauroral Geospace presents a comprehensive examination of the self-consistent processes leading to multiscale electromagnetic and plasma structures in the magnetosphere and ionosphere near the plasmapause, particularly in the auroral and subauroral geospace. It utilizes simulations and a large number of relevant in situ measurements conducted by the most recent satellite missions, as well as ground-based optical and radar observations to verify the conclusions and analysis. Including several case studies of observations related to prominent geospacer events, the book also provides experimental and numerical results throughout the chapters to further enhance understanding of how the same physical mechanisms produce different phenomena at different regions of the near-Earth space environment. Additionally, the comprehensive description of mechanisms responsible for space weather effects will give readers a broad foundation of wave and particle processes in the near-Earth magnetosphere. As such, Nonlinear Wave and Plasma Structures in the Auroral and Subauroral Geospace Nonlinear Wave and Plasma Structures in the Auroral and Subauroral Geospace is a cutting-edge reference for space physicists looking to better understand plasma physics in geospace.
Magnetospheric Imaging: Understanding the Space Environment through Global Measurements is a state-of-the-art resource on new and advanced techniques and technologies used in measuring and examining the space environment on a global scale. Chapters detail this emergent field by exploring optical imaging, ultraviolet imaging, energetic neutral atom imaging, X-ray imaging, radio frequency imaging, and magnetic field imaging. Each technique is clearly described, with details about the technologies involved, how they work, and both their opportunities and limitations. Magnetospheric imaging is still a relatively young capability in magnetospheric research, hence this book is an ideal resource on this burgeoning field of study. This book is a comprehensive resource for understanding where the field stands, as well as providing a stepping stone for continued advancement of the field, from developing new techniques, to applying techniques on other planetary bodies.
Advances in Microbial Physiology, Volume 79, the latest release in this serial that highlights new advances in the field, presents interesting and timely chapters authored by an international board of subject matter experts.
Precipitation Science: Measurement, Remote Sensing, Microphysics and Modeling addresses the latest key concerns for researchers in precipitation science, mainly observing, measuring, modeling and forecasting. Using case studies and global examples, the book demonstrates how researchers are addressing these issues using state-of-the-art methods and models to improve accuracy and output across the field. In the process, it covers such topics as discrepancies between models and observations, precipitation estimations, error assessment, droplet size distributions, and using data in forecasting and simulations. Other sections cover improved standard approaches, novel approaches, and coverage of a variety of topics such as climatology, data records, and more. By providing comprehensive coverage of the most up-to-date approaches to understanding, modeling, and predicting precipitation, this book offers researchers in atmospheric science, hydrology and meteorology with a comprehensive resource for improving outcomes and advancing knowledge.
Landslide Hazards, Risks and Disasters Second Edition makes a broad but detailed examination of major aspects of mass movements and their consequences, and provides knowledge to form the basis for more complete and accurate monitoring, prediction, preparedness and reduction of the impacts of landslides on society. The frequency and intensity of landslide hazards and disasters has consistently increased over the past century, and this trend will continue as society increasingly utilises steep landscapes. Landslides and related phenomena can be triggered by other hazard and disaster processes - such as earthquakes, tsunamis, volcanic eruptions and wildfires - and they can also cause other hazards and disasters, making them a complex multi-disciplinary challenge. This new edition of Landslide Hazards, Risks and Disasters is updated and includes new chapters, covering additional topics including rockfalls, landslide interactions and impacts and geomorphic perspectives. Knowledge, understanding and the ability to model landslide processes are becoming increasingly important challenges for society extends its occupation of increasingly hilly and mountainous terrain, making this book a key resource for educators, researchers and disaster managers in geophysics, geology and environmental science.
Ancient Supercontinents and the Paleogeography of Earth offers a systematic examination of Precambrian cratons and supercontinents. Through detailed maps of drift histories and paleogeography of each continent, this book examines topics related to Earth's tectonic evolution prior to Pangea, including plate kinematics, orogenic development, and paleoenvironments. Additionally, this book discusses the methodologies used, principally paleomagnetism and tectonostratigraphy, and addresses geophysical topics of mantle dynamics and geodynamo evolution over billions of years. Structured clearly with consistent coverage for Precambrian cratons, this book combines state-of-the-art paleomagnetic and geochronologic data to reconstruct the paleogeography of the Earth in the context of major climatic events such as global glaciations. It is an ideal, up-to-date reference for geoscientists and geographers looking for answers to questions surrounding the tectonic evolution of Earth.
Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System provides a systematic understanding of Magnetosphere-Ionosphere-Thermosphere dynamics. Cross-scale coupling has become increasingly important in the Space Physics community. Although large-scale processes can specify the averaged state of the system reasonably well, they cannot accurately describe localized and rapidly varying structures in space in actual events. Such localized and variable structures can be as intense as the large-scale features. This book covers observations on quantifying coupling and energetics and simulation on evaluating impacts of cross-scale processes. It includes an in-depth review and summary of the current status of multi-scale coupling processes, fundamental physics, and concise illustrations and plots that are usable in tutorial presentations and classrooms. Organized by physical quantities in the system, Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System reviews recent advances in cross-scale coupling and energy transfer processes, making it an important resource for space physicists and researchers working on the magnetosphere, ionosphere, and thermosphere.
Natural and Anthropogenic Impacts on Cave Climates: Postojna and Predjama Show Caves (Slovenia) presents an analysis of continuous time-series data for show caves in Slovenia and their significance in understanding global cave microclimates. The book presents detailed guidelines and procedures for conducting temperature and CO2 measurements in caves and uses Slovenian caves as a detailed case study to demonstrate their application. Critical interpretations of these temporal series provide the reader with specific indicators of the conditions for water condensation to occur and CO2 thresholds and how to apply them to different cave systems. Direct comparisons are made between microclimate data from caves with varying levels of tourism, and the linkage between the number of visitors and microclimate changes is discussed in detail. This book is a unique reference on cave meteorology for Climate Scientists, Meteorologists, Geologists, Microbiologists, Environmental and Conservation Scientists, and Cave Managers.
Viral Replication Enzymes and their Inhibitors, Part B, Volume 50 in The Enzymes series, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of topics surrounding enzymes.
Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field, one that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry and biology. The book features detailed reviews written by leading international researchers. In this volume, the readers are presented with an exciting combination of themes.
Viral Replication Enzymes and their Inhibitors Part A, Volume 49, the latest release in the Enzymes series, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of related topics.
Environmental Systems Science: Theory and Practical Applications looks at pollution and environmental quality from a systems perspective. Credible human and ecological risk estimation and prediction methods are described, including life cycle assessment, feasibility studies, pollution control decision tools, and approaches to determine adverse outcome pathways, fate and transport, sampling and analysis, and cost-effectiveness. The book brings translational science to environmental quality, applying groundbreaking methodologies like informatics, data mining, and applications of secondary data systems. Multiple human and ecological variables are introduced and integrated to support calculations that aid environmental and public health decision making. The book bridges the perspectives of scientists, engineers, and other professionals working in numerous environmental and public health fields addressing problems like toxic substances, deforestation, climate change, and loss of biological diversity, recommending sustainable solutions to these and other seemingly intractable environmental problems. The causal agents discussed include physical, chemical, and biological agents, such as per- and polyfluoroalkyl substances (PFAS), SARS-CoV-2 (the COVID-19 virus), and other emerging contaminants.
Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field one that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. In this volume the readers are presented with an exciting combination of themes.
Formation and Structure of Planets, Volume 62 in the Advances in Geophysics series, highlights new chapters on a variety of topics in the field, including The evolution of multi-method imaging of structures and processes in environmental geophysics, An introduction to variational inference in Geophysical inverse problems, Moment tensor inversion, and more.
Climate Change Science: Causes, Effects and Solutions for Global Warming presents unbiased, state-of-the-art, scientific knowledge on climate change and engineering solutions for mitigation. The book expands on all major prospective solutions for tackling climate change in a complete manner. It comprehensively explains the variety of climate solutions currently available, including the remaining challenges associated with each. Effective, complementary solutions for engineering to combat climate change are discussed and elaborated on. Some of the more high-risk proposals are qualitatively and quantitatively compared and contrasted with low-risk mitigation actions to facilitate the formulation of feasible, environmentally-friendly solutions. The book provides academics, postgraduate students and other readers in the fields of environmental science, climate change, atmospheric sciences and engineering with the information they need for their roles. Through exploring the fundamental information currently available, exergy utilization, large-scale solutions, and current solutions in place, the book is an invaluable look into how climate change can be addressed from an engineering-perspective using scientific models and calculations. |
You may like...
Bioinspired Computation in Combinatorial…
Frank Neumann, Carsten Witt
Hardcover
R1,426
Discovery Miles 14 260
|