![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics
Advances in Microbial Physiology, Volume 81 highlights new advances in the field with this new release presenting interesting chapters written by an international board of authors. Updates in this release include sections on Antibiotic tolerance, Lanthanides in bacterial proteins, Bacterial toxins and host-microbe interactions, and Nitric oxide.
Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant constitutive relations. The differential formulation can be written in terms of memory variables, and Biot theory is used to describe wave propagation in porous media. For each constitutive relation, a plane-wave analysis is performed to illustrate the physics of wave propagation. New topics are the S-wave amplification function, Fermat principle and its relation to Snell law, bounds and averages of seismic Q, seismic attenuation in partially molten rocks, and more. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics and material science - including many branches of acoustics of fluids and solids - may also find this text useful.
Biomaterials for 3D Tumor Modeling reviews the fundamentals and most relevant areas of the latest advances of research of 3D cancer models, focusing on biomaterials science, tissue engineering, drug delivery and screening aspects. The book reviews advanced fundamental topics, including the causes of cancer, existing cancer models, angiogenesis and inflammation during cancer progression, and metastasis in 3D biomaterials. Then, the most relevant biomaterials are reviewed, including methods for engineering and fabrication of biomaterials. 3D models for key biological systems and types of cancer are also discussed, including lung, liver, oral, prostate, pancreatic, ovarian, bone and pediatric cancer. This book is suitable for those working in the disciplines of materials science, biochemistry, genetics, molecular biology, drug delivery and regenerative medicine.
Advances in Geophysics serial highlights new advances in the field with this new volume presenting interesting chapters. Each chapter is written by an international board of authors.
Machine Learning for Planetary Science presents planetary scientists with a way to introduce machine learning into the research workflow as increasingly large nonlinear datasets are acquired from planetary exploration missions. The book explores research that leverages machine learning methods to enhance our scientific understanding of planetary data and serves as a guide for selecting the right methods and tools for solving a variety of everyday problems in planetary science using machine learning. Illustrating ways to employ machine learning in practice with case studies, the book is clearly organized into four parts to provide thorough context and easy navigation. The book covers a range of issues, from data analysis on the ground to data analysis onboard a spacecraft, and from prioritization of novel or interesting observations to enhanced missions planning. This book is therefore a key resource for planetary scientists working in data analysis, missions planning, and scientific observation.
Seismic While Drilling: Fundamentals of Drill-Bit Seismic for Exploration, 2nd edition, revised and extended gives a theoretical and practical introduction to seismic while drilling by using drill-bit noise. While drilling seismic methods using surface sources and downhole receivers are also analysed. The goal is to support the exploration geology with geophysical control of drilling, and to build a bridge between geophysicists involved in seismic while drilling, drillers and exploration geologists. This revised and extended edition includes new topics such as novel drilling technology, downhole communication, ground-force drill-bit measurement, SWD seismic interferometry, and fiber optic (DAS). A new section is dedicated to well placement and geosteering. Like the first edition, Seismic While Drilling, 2nd edition also includes examples of SWD analysis and application on real data.
Interpreting Subsurface Seismic Data presents recent advances in methodologies for seismic imaging and interpretation across multiple applications in geophysics including exploration, marine geology, and hazards. It provides foundational information for context, as well as focussing on recent advances and future challenges. It offers detailed methodologies for interpreting the increasingly vast quantity of data extracted from seismic volumes. Organized into three parts covering foundational context, case studies, and future considerations, Interpreting Subsurface Seismic Data offers a holistic view of seismic data interpretation to ensure understanding while also applying cutting-edge technologies. This view makes the book valuable to researchers and students in a variety of geoscience disciplines, including geophysics, hydrocarbon exploration, applied geology, and hazards.
All galaxies host a super-massive black hole in their center. These black holes grow their mass in symbiosis with their host galaxy and moderate their star formation. When matter is driven towards the nucleus, an accretion disk is formed to transfer angular momentum and considerable energy is released when the material falls into the black hole: this is the phenomenon of active galactic nuclei (AGN). A nucleus can shine one thousand times more brightly than the entire galaxy with its 200 billion stars. The nuclear activity can take many forms, from very powerful quasars to more ordinary Seyfert galaxies, passing by radio-galaxies, which eject a collimated plasma at ten times the radius of the galaxy.This book examines all of these manifestations and presents a unified view. When two galaxies merge, a binary black hole is formed and the two black holes will spiral inwards and merge, emitting long gravitational waves, which could be detected by the future LISA satellite.
Carbon Mineralization in Coastal Wetlands: From Litter Decomposition to Greenhouse Gas Dynamics fills the current knowledge gap in carbon mineralization, providing a balanced view of the carbon dynamics of coastal wetlands. This book provides a holistic treatment of carbon mineralization, from the contributions of litter/root decomposition pathways to carbon mineralization and the processes and sources of greenhouse gas production. This book compares carbon mineralization in coastal wetlands and highlights differences in carbon dynamics. As studies on blue carbon have strongly emphasized the storage potential of coastal wetlands, this book serves as an ideal resource on the topics discussed.
Oral Delivery of Therapeutic Peptides and Proteins provides a complete overview of the journey scientists pursue to attain protein and peptide oral delivery. The book highlights the physiological challenges that must be accounted for in addition to overcoming protease inhibition and acid stability issues that are commonly mentioned in this area of research. Primary topics include formulation technologies being adopted for oral delivery of proteins and peptides, modification of actives to make them more suited for oral delivery, animal models and their shortcomings in assessing oral bioavailability, and in vitro models to simulate drug absorption and transport. Academics and industry researchers working in formulation development and researchers and advanced students in biotechnology and pharmacy will find this a useful resource.
Nonlinear Wave and Plasma Structures in the Auroral and Subauroral Geospace presents a comprehensive examination of the self-consistent processes leading to multiscale electromagnetic and plasma structures in the magnetosphere and ionosphere near the plasmapause, particularly in the auroral and subauroral geospace. It utilizes simulations and a large number of relevant in situ measurements conducted by the most recent satellite missions, as well as ground-based optical and radar observations to verify the conclusions and analysis. Including several case studies of observations related to prominent geospacer events, the book also provides experimental and numerical results throughout the chapters to further enhance understanding of how the same physical mechanisms produce different phenomena at different regions of the near-Earth space environment. Additionally, the comprehensive description of mechanisms responsible for space weather effects will give readers a broad foundation of wave and particle processes in the near-Earth magnetosphere. As such, Nonlinear Wave and Plasma Structures in the Auroral and Subauroral Geospace Nonlinear Wave and Plasma Structures in the Auroral and Subauroral Geospace is a cutting-edge reference for space physicists looking to better understand plasma physics in geospace.
Advances in Microbial Physiology, Volume 150 in this important serial, highlights new advances in the field with this new volume including content by an international board of authors. Chapters in this new release include Organization of respiratory chains in the bacterial cell, Anaerobic methane oxidizing archaea, Dawn of the DedA: the structure and function of the DedA family of integral membrane proteins associated with bacterial viability and antimicrobial resistance, Nickel, an essential virulence determinant of Helicobacter pylori: trafficking pathways and their targeting by bismuth, Dissimilatory sulfur compounds oxidation in thermophilic and chemolithoautotrophic bacteria belonging to the Aquificales order, and much more.
Precipitation Science: Measurement, Remote Sensing, Microphysics and Modeling addresses the latest key concerns for researchers in precipitation science, mainly observing, measuring, modeling and forecasting. Using case studies and global examples, the book demonstrates how researchers are addressing these issues using state-of-the-art methods and models to improve accuracy and output across the field. In the process, it covers such topics as discrepancies between models and observations, precipitation estimations, error assessment, droplet size distributions, and using data in forecasting and simulations. Other sections cover improved standard approaches, novel approaches, and coverage of a variety of topics such as climatology, data records, and more. By providing comprehensive coverage of the most up-to-date approaches to understanding, modeling, and predicting precipitation, this book offers researchers in atmospheric science, hydrology and meteorology with a comprehensive resource for improving outcomes and advancing knowledge.
Magnetospheric Imaging: Understanding the Space Environment through Global Measurements is a state-of-the-art resource on new and advanced techniques and technologies used in measuring and examining the space environment on a global scale. Chapters detail this emergent field by exploring optical imaging, ultraviolet imaging, energetic neutral atom imaging, X-ray imaging, radio frequency imaging, and magnetic field imaging. Each technique is clearly described, with details about the technologies involved, how they work, and both their opportunities and limitations. Magnetospheric imaging is still a relatively young capability in magnetospheric research, hence this book is an ideal resource on this burgeoning field of study. This book is a comprehensive resource for understanding where the field stands, as well as providing a stepping stone for continued advancement of the field, from developing new techniques, to applying techniques on other planetary bodies.
Advances in Microbial Physiology, Volume 79, the latest release in this serial that highlights new advances in the field, presents interesting and timely chapters authored by an international board of subject matter experts.
Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs presents a comprehensive look at these new methods and technologies for the petrophysical characterization of unconventional reservoirs, including recent theoretical advances and modeling on fluids transport in unconventional reservoirs. The book is a valuable tool for geoscientists and engineers working in academia and industry. Many novel technologies and approaches, including petrophysics, multi-scale modelling, rock reconstruction and upscaling approaches are discussed, along with the challenge of the development of unconventional reservoirs and the mechanism of multi-phase/multi-scale flow and transport in these structures.
Ancient Supercontinents and the Paleogeography of Earth offers a systematic examination of Precambrian cratons and supercontinents. Through detailed maps of drift histories and paleogeography of each continent, this book examines topics related to Earth's tectonic evolution prior to Pangea, including plate kinematics, orogenic development, and paleoenvironments. Additionally, this book discusses the methodologies used, principally paleomagnetism and tectonostratigraphy, and addresses geophysical topics of mantle dynamics and geodynamo evolution over billions of years. Structured clearly with consistent coverage for Precambrian cratons, this book combines state-of-the-art paleomagnetic and geochronologic data to reconstruct the paleogeography of the Earth in the context of major climatic events such as global glaciations. It is an ideal, up-to-date reference for geoscientists and geographers looking for answers to questions surrounding the tectonic evolution of Earth.
Landslide Hazards, Risks and Disasters Second Edition makes a broad but detailed examination of major aspects of mass movements and their consequences, and provides knowledge to form the basis for more complete and accurate monitoring, prediction, preparedness and reduction of the impacts of landslides on society. The frequency and intensity of landslide hazards and disasters has consistently increased over the past century, and this trend will continue as society increasingly utilises steep landscapes. Landslides and related phenomena can be triggered by other hazard and disaster processes - such as earthquakes, tsunamis, volcanic eruptions and wildfires - and they can also cause other hazards and disasters, making them a complex multi-disciplinary challenge. This new edition of Landslide Hazards, Risks and Disasters is updated and includes new chapters, covering additional topics including rockfalls, landslide interactions and impacts and geomorphic perspectives. Knowledge, understanding and the ability to model landslide processes are becoming increasingly important challenges for society extends its occupation of increasingly hilly and mountainous terrain, making this book a key resource for educators, researchers and disaster managers in geophysics, geology and environmental science.
Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System provides a systematic understanding of Magnetosphere-Ionosphere-Thermosphere dynamics. Cross-scale coupling has become increasingly important in the Space Physics community. Although large-scale processes can specify the averaged state of the system reasonably well, they cannot accurately describe localized and rapidly varying structures in space in actual events. Such localized and variable structures can be as intense as the large-scale features. This book covers observations on quantifying coupling and energetics and simulation on evaluating impacts of cross-scale processes. It includes an in-depth review and summary of the current status of multi-scale coupling processes, fundamental physics, and concise illustrations and plots that are usable in tutorial presentations and classrooms. Organized by physical quantities in the system, Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System reviews recent advances in cross-scale coupling and energy transfer processes, making it an important resource for space physicists and researchers working on the magnetosphere, ionosphere, and thermosphere.
Natural and Anthropogenic Impacts on Cave Climates: Postojna and Predjama Show Caves (Slovenia) presents an analysis of continuous time-series data for show caves in Slovenia and their significance in understanding global cave microclimates. The book presents detailed guidelines and procedures for conducting temperature and CO2 measurements in caves and uses Slovenian caves as a detailed case study to demonstrate their application. Critical interpretations of these temporal series provide the reader with specific indicators of the conditions for water condensation to occur and CO2 thresholds and how to apply them to different cave systems. Direct comparisons are made between microclimate data from caves with varying levels of tourism, and the linkage between the number of visitors and microclimate changes is discussed in detail. This book is a unique reference on cave meteorology for Climate Scientists, Meteorologists, Geologists, Microbiologists, Environmental and Conservation Scientists, and Cave Managers.
Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field, one that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry and biology. The book features detailed reviews written by leading international researchers. In this volume, the readers are presented with an exciting combination of themes. |
You may like...
The Arctic - A Barometer of Global…
Neloy Khare, Rajni Khare
Paperback
R2,821
Discovery Miles 28 210
Handbook of Hormones - Comparative…
Hironori Ando, Kazuyoshi Ukena, …
Paperback
R5,129
Discovery Miles 51 290
The Geological Interpretation of Well…
M.H. Rider, Martin Kennedy
Paperback
R1,573
Discovery Miles 15 730
|