![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics
This book provides an up-to-date understanding of the progress and current problems of the interplay of nonlocality in the classical theories of gravitation and quantum theory. These problems lie on the border between general relativity and quantum physics, including quantum gravity.
This book systematically introduces readers to the fundamental physics and a broad range of applications of acoustic levitation, one of the most promising techniques for the container-free handling of small solid particles and liquid droplets. As it does away with the need for solid walls and can easily be incorporated into analysis instruments, acoustic levitation has attracted considerable research interest in many fields, from fluid physics to material science. The book offers a comprehensive overview of acoustic levitation, including the history of acoustic radiation force; the design and development of acoustic levitators; the technology's applications, ranging from drop dynamics studies to bio/chemical analysis; and the insightful perspectives that the technique provides. It also discusses the latest advances in the field, from experiments to numerical simulations. As such, the book provides readers with a clearer understanding of acoustic levitation, while also stimulating new research areas for scientists and engineers in physics, chemistry, biology, medicine and other related fields.
This thesis provides new insights into the seemingly anomalous ubiquity of lithium-rich red giant stars. The theory of stellar evolution, one of the most successful models of modern astrophysics, predicts that red giant stars should display negligible levels of lithium (Li) on their surfaces. However, Li-rich giants, defined as those showing more than three times the Li content of the Sun, are found everywhere astronomers look in apparent defiance of established theory. The author addresses this problem, analyzing the different possible explanations for such an anomaly, which include interaction with a binary companion, the production of Li in the interior of the star with its subsequent transport to stellar exteriors, and the stellar interaction with planets. The author focuses on this last possibility, where the Li enrichment may be due to the ingestion of planets or brown dwarfs as the stars in question grew in size while becoming giants. She shows that this process is indeed able to explain an important fraction of giants with Li levels above the three times solar threshold, but that some other mechanism is needed to explain the remaining fraction. While this is an important discovery in its own right, the result that makes this thesis groundbreaking is its demonstration that the threshold between Li-normal and Li-rich is mass dependent rather than a fixed proportion of the Sun's content. This corrects a fundamental misapprehension of the phenomenon and opens up a new framework in which to understand and solve the problem. Finally, the author presents interesting observational applications and samples with which to test this new approach to the problem of Li enrichment in giants.
A conference on "Observational Evidence for Black Holes in the Universe" was held in Calcutta during January 10-17, 1998. This was the first time that experts had gathered to debate and discuss topics such as: Should black holes exist?; If so, how to detect them?; And Have we found them? This book is the essence of this gathering. Black holes are enigmatic objects since it is impossible to locate them through direct observations. State-of-the-art theoretical works and numerical simulations have given us enough clues of what to look for. Observations, from both ground and space-based missions, have been able to find these tell-tale signatures. This book is a compendium of our present knowledge about these theories and observations at the end of the 20th century. Combined, they give an idea of whether black holes, galactic as well as extragalactic, have been detected or not.
This thesis focuses on theoretical analysis of the sophisticated ultrafast optical experiments that probe the crucial first few picoseconds of quantum light harvesting, making an important contribution to quantum biology, an exciting new field at the intersection of condensed matter, physical chemistry and biology. It provides new insights into the role of vibrational dynamics during singlet fission of organic pentacene thin films, and targeting the importance of vibrational dynamics in the design of nanoscale organic light harvesting devices, it also develops a new wavelet analysis technique to probe vibronic dynamics in time-resolved nonlinear optical experiments. Lastly, the thesis explores the theory of how non-linear "breather" vibrations are excited and propagate in the disordered nanostructures of photosynthetic proteins.
This monograph presents recent advances in neural network (NN)
approaches and applications to chemical reaction dynamics. Topics
covered include: (i) the development of ab initio potential-energy
surfaces (PES) for complex multichannel systems using modified
novelty sampling and feedforward NNs; (ii) methods for sampling the
configuration space of critical importance, such as trajectory and
novelty sampling methods and gradient fitting methods; (iii)
parametrization of interatomic potential functions using a genetic
algorithm accelerated with a NN; (iv) parametrization of analytic
interatomic potential functions using NNs; (v) self-starting
methods for obtaining analytic PES from ab inito electronic
structure calculations using direct dynamics; (vi) development of a
novel method, namely, combined function derivative approximation
(CFDA) for simultaneous fitting of a PES and its corresponding
force fields using feedforward neural networks; (vii) development
of generalized PES using many-body expansions, NNs, and moiety
energy approximations; (viii) NN methods for data analysis,
reaction probabilities, and statistical error reduction in chemical
reaction dynamics; (ix) accurate prediction of higher-level
electronic structure energies (e.g. MP4 or higher) for large
databases using NNs, lower-level (Hartree-Fock) energies, and small
subsets of the higher-energy database; and finally (x) illustrative
examples of NN applications to chemical reaction dynamics of
increasing complexity starting from simple near equilibrium
structures (vibrational state studies) to more complex
non-adiabatic reactions.
This book presents peer-reviewed articles from the 1st International Conference on Trends in Modern Physics (TiMP 2021) held at Assam Don Bosco University in Guwahati, India, between February 26 and 27, 2021. This conference was the 3rd in a series of annual conferences of the Department of Physics, ADBU, with the 1st and 2nd being national conferences. The conference was jointly organized by the Department of Physics, ADBU, and the Indian Association of Physics Teachers (IAPT) to promote greater synergy between thematic areas of astrophysics and cosmology, plasma physics, material and nanophysics, nuclear physics, and particle physics
This book focuses on the state-of-the-art of biosensor research and development for specialists and non-specialists. It introduces the fundamentals of the subject with relevant characteristics of transducer elements, as well as biochemical recognition molecules. This book is ideal for researchers of nanotechnology, materials science and biophysics.
This book provides information and tools necessary to bridge and integrate the knowledge gaps related to the acquisition and processing of archaeological data, specifically in the field of preventive diagnostics, urban centers, archaeological parks and historical monuments, through activities that involve the application of non-invasive diagnostic detection systems, in the field of applied geophysics. The principal aim of this book is to define a tool for experts that work in the frame of Cultural Heritage and to identify a procedure of intervention transferable and usable in different geographical contexts and areas of investigations: it could help to decide the better technique of investigation to apply in relation to the predictive characteristics of the archaeological site and the objectives of the survey. The book is divided in two parts. The first one explains the theory of ground high resolution penetrating radar (GPR), electrical resistivity tomography (ERT), controlled source electromagnetism system, differential magnetic method and the scenario of integrated methods of different geophysical techniques. Each section covers the basic theory (complete description of the physical parameters involved in the method), field instruments (description of all systems actually offered by commercial companies), field techniques (presentation of the main procedures and setting parameters used to explore the ground surface during data acquisition), techniques of data processing and representation (main processing routines and comparison between different techniques; presentation of different typologies of graphical representation), and the possibility and limitations of methods (explanation of best and worst conditions of implementation of the geophysical technique in relation to the contrasts between archaeological features and the natural background and the features of the instruments and arrays). The second part describes some applications of geophysical prospection to Cultural Heritage in detailed case histories, divided in sections relative to monuments, historical buildings, urban centres, archaeological parks and ancient viability. Moreover, examples of integration of three-dimensional reliefs and geophysical diagnostic of a monuments and studies of large scale reconnaissance implemented into a Geographical Information System are treated. In each case study the authors cover the description of the archaeological or historical contest; an explanation of the problem to solve; a choice of the geophysical methods; the setting of the procedure of data acquisition; techniques of data processing; a representation, interpretation, and discussion of the results.
This book explores the dynamics of planetary and stellar fluid layers, including atmospheres, oceans, iron cores, and convective and radiative zones in stars, describing the different theoretical, computational and experimental methods used to study these problems in fluid mechanics, including the advantages and limitations of each method for different problems. This scientific domain is by nature interdisciplinary and multi-method, but while much effort has been devoted to solving open questions within the various fields of mechanics, applied mathematics, physics, earth sciences and astrophysics, and while much progress has been made within each domain using theoretical, numerical and experimental approaches, cross-fertilizations have remained marginal. Going beyond the state of the art, the book provides readers with a global introduction and an up-to-date overview of relevant studies, fully addressing the wide range of disciplines and methods involved. The content builds on the CISM course "Fluid mechanics of planets and stars", held in April 2018, which was part of the research project FLUDYCO, supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program.
This book provides a coherent and comprehensive overview of the generation and application of mono-energetic positron beams. It has been written by acknowledged experts, at a level accessible to graduate students working, or planning to work, with positron beams, and to scientists in other areas who want to know something about the field. The book begins with a brief historical introduction and an overview of how positron beams are generated and transported. A description of the fate of slow positrons in gaseous and condensed matter, with reference to many of the fundamental measurements made possible by the advent of positron beams, is followed by a discussion on applications in the study of solid surfaces, defect profiling in subsurface regions, interfaces and thin films, and the probing of bulk properties in novel ways. The book ends with a look at the future, considering the prospects for intense positron beams and their potential for further research.
The nature of dark matter remains one of the preeminent mysteries in physics and cosmology. It appears to require the existence of new particles whose interactions with ordinary matter are extraordinarily feeble. One well-motivated candidate is the axion, an extraordinarily light neutral particle that may possibly be detected by looking for their conversion to detectable microwaves in the presence of a strong magnetic field. This has led to a number of experimental searches that are beginning to probe plausible axion model space and may reveal the axion in the near future. These proceedings discuss the challenges of designing and operating tunable resonant cavities and detectors at ultralow temperatures. The topics discussed here have potential application far beyond the field of dark matter detection and may be applied to resonant cavities for accelerators as well as designing superconducting detectors for quantum information and computing applications. This work is intended for graduate students and researchers interested in learning the unique requirements for designing and operating microwave cavities and detectors for direct axion searches and to introduce several proposed experimental concepts that are still in the prototype stage.
This book highlights the latest research presented at the International Conference on Translational Medicine and Imaging (ICTMI) 2017. This event brought together the world's leading scientists, engineers and clinicians from a wide range of disciplines in the field of medical imaging. Bioimaging has continued to evolve across a wide spectrum of applications from diagnostics and personalized therapy to the mechanistic understanding of biological processes, and as a result there is ever-increasing demand for more robust methods and their integration with clinical and molecular data. This book presents a number of these methods.
This book reviews the active faults around nuclear power plants in Japan and recommends an optimal method of nuclear power regulation controlled by the Nuclear Regulation Authority of Japan. The active faults around nuclear power plants have been underestimated in Japan since the latter half of the 20th century. However, based on the lessons learned from the Fukushima nuclear power plant accident, the book sheds light on why the risks of active faults were underestimated, and discusses the optimal scientific method of assessing those risks. Further, the author shares his experiences in the new standard for nuclear regulation creation team and in the active fault survey at the Nuclear Regulation Authority of Japan. This book is a valuable resource for students, researchers, academic and policy-makers, as well as non-experts interested in nuclear safety.
1 Theoretical Background.- 2 Theoretical Calculations on Small Amino Acids.- 3 Gamma-Aminobutyric Acid (GABA).- 4 The Diaminobutyric (DABA), Delta Aminopentanoic, and Epsilon Aminohexanoic Acids.- 5 Ab Initio Studies of Some Acids and Basic Amino Acids: Aspartic, Glutamic, Arginine, and Deaminoarginine.- 6 Proline.- 7 Taurine and Hypotaurine.- 8 Ab Initio Calculations Related to Glucagon.- 9 The Alpha Factor.- 10 Tight Turns in Proteins.- 11 Some Small Peptides.- 12 Oligopeptides That Are Anticancer Drugs.- Appendix Theoretical Studies of a Glucagon Fragment: Ser8-Asp9-Tyr10.
Advances in Imaging & Electron Physics merges two long-running serials-Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
The two years previous to 1997 have produced some of the most exciting results in the history of astronomy: the indirect detection of planets beyond our solar system. The study of the characteristics and physical nature of exo-planets requires an infrared interferometer in space. Such observatory would directly detect the thermal emission from exo-planets and would allow us to see signatures of molecules, such as water, ozone and carbon dioxide, in their atmospheres. The presence of such molecules would be strong evidence for exo-life. In addition, this kind of instrument would help to clarify important questions concerning the birth and death of stars and extragalactic astronomy. In Toledo, scientists and engineers from both sides of the Atlantic met to discuss the technological challenges of an infrared space interferometer and its scientific capabilities, particularly those related to exo-planetary systems and Earth-like planets.
This book introduces readers to seismic inversion methods and their application to both synthetic and real seismic data sets. Seismic inversion methods are routinely used to estimate attributes like P-impedance, S-impedance, density, the ratio of P-wave and S-wave velocities and elastic impedances from seismic and well log data. These attributes help to understand lithology and fluid contents in the subsurface. There are several seismic inversion methods available, but their application and results differ considerably, which can lead to confusion. This book explains all popular inversion methods, discusses their mathematical backgrounds, and demonstrates their capacity to extract information from seismic reflection data. The types covered include model-based inversion, colored inversion, sparse spike inversion, band-limited inversion, simultaneous inversion, elastic impedance inversion and geostatistical inversion, which includes single-attribute analysis, multi-attribute analysis, probabilistic neural networks and multi-layer feed-forward neural networks. In addition, the book describes local and global optimization methods and their application to seismic reflection data. Given its multidisciplinary, integrated and practical approach, the book offers a valuable tool for students and young professionals, especially those affiliated with oil companies.
This book summarizes the latest findings by leading researchers in the field of photon science in Russia and Japan. It discusses recent advances in the field of photon science and chemistry, covering a wide range of topics, including photochemistry and spectroscopy of novel materials, magnetic properties of solids, photobiology and imaging, and spectroscopy of solids and nanostructures. Based on lectures by respected scientists at the forefront of photon and molecular sciences, the book helps keep readers abreast of the current developments in the field.
Here is an accurate and readable translation of a seminal article by Henri Poincare that is a classic in the study of dynamical systems popularly called chaos theory. In an effort to understand the stability of orbits in the solar system, Poincare applied a Hamiltonian formulation to the equations of planetary motion and studied these differential equations in the limited case of three bodies to arrive at properties of the equations' solutions, such as orbital resonances and horseshoe orbits. Poincare wrote for professional mathematicians and astronomers interested in celestial mechanics and differential equations. Contemporary historians of math or science and researchers in dynamical systems and planetary motion with an interest in the origin or history of their field will find his work fascinating.
This book highlights the current state of the art in single cell analysis, an area that involves many fields of science - from clinical hematology, functional analysis and drug screening, to platelet and microparticle analysis, marine biology and fundamental cancer research. This book brings together an eclectic group of current applications, all of which have a significant impact on our current state of knowledge. The authors of these chapters are all pioneering researchers in the field of single cell analysis. The book will not only appeal to those readers more focused on clinical applications, but also those interested in highly technical aspects of the technologies. All of the technologies identified utilize unique applications of photon detection systems.
This book describes the derivation of the equations of motion of fluids as well as the dynamics of ocean and atmospheric currents on both large and small scales through the use of variational methods. In this way the equations of Fluid and Geophysical Fluid Dynamics are re-derived making use of a unifying principle, that is Hamilton's Principle of Least Action. The equations are analyzed within the framework of Lagrangian and Hamiltonian mechanics for continuous systems. The analysis of the equations' symmetries and the resulting conservation laws, from Noether's Theorem, represent the core of the description. Central to this work is the analysis of particle relabeling symmetry, which is unique for fluid dynamics and results in the conservation of potential vorticity. Different special approximations and relations, ranging from the semi-geostrophic approximation to the conservation of wave activity, are derived and analyzed. Thanks to a complete derivation of all relationships, this book is accessible for students at both undergraduate and graduate levels, as well for researchers. Students of theoretical physics and applied mathematics will recognize the existence of theoretical challenges behind the applied field of Geophysical Fluid Dynamics, while students of applied physics, meteorology and oceanography will be able to find and appreciate the fundamental relationships behind equations in this field.
This book continues the process of systematization of knowledge about convection. It is important to put the current knowledge on weakly and strongly stratified convection in order, and provide a comprehensive description of the marginal, weakly nonlinear and fully developed stages of convective flow in both cases. The book provides a short compendium of knowledge on the linear and weakly nonlinear limits of the Boussinesq convection, and a review of the theory on fully developed Boussinesq convection. The third chapter is devoted to a detailed derivation and a study of the three aforementioned stages of stratified (anelastic) convection, with a full solution in the marginal stage provided for the first time. Detailed and systematic explanations are given. The book is intended mainly as a textbook for courses on hydrodynamics and convective flows, for the use of lecturers and students; however, it also serves for the entire scientific community as a practical reference.
This book is the result of collaboration within the framework of the Third International Scientific School for Young Scientists held at the Ishlinskii Institute for Problems in Mechanics of Russian Academy of Sciences, 2017, November. The papers included describe studies on the dynamics of natural system - geosphere, hydrosphere, atmosphere-and their interactions, the human contribution to naturally occurring processes, laboratory modeling of earth and environment processes, and testing of new developed physical and mathematical models. The book particularly focuses on modeling in the field of oil and gas production as well as new alternative energy sources.
This book provides systematic knowledge of basic principles in the design of fluorescence sensing and imaging techniques together with critical analysis of recent developments. Fluorescence is the most popular technique in chemical and biological sensing because of its ultimate sensitivity, high temporal and spatial resolution and versatility that enables imaging within the living cells. It develops rapidly in the directions of constructing new molecular recognition units, new fluorescence reporters and in improving sensitivity of response up to detection of single molecules. Its application areas range from control of industrial processes to environment monitoring and clinical diagnostics. Being a guide for students and young researchers, it also addresses professionals involved in active basic and applied research. Making a strong link between education, research and product development, this book discusses prospects for future progress. |
![]() ![]() You may like...
Handbook of Research on Business and…
Sarfraz A Mian, Magnus Klofsten, …
Hardcover
R6,849
Discovery Miles 68 490
Konzeptentwicklung und Gestaltung…
Josef Ponn, Udo Lindemann
Hardcover
R2,451
Discovery Miles 24 510
|