![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Electricity, magnetism & electromagnetism
The International Workshop on "Intersubband Transitions in Quantum Wells:: Physics and Applications," was held at National Cheng Kung University, in Tainan, Taiwan, December 15-18, 1997. The objective of the Workshop is to facilitate the presentation and discussion of the recent results in theoretical, experimental, and applied aspects of intersubband transitions in quantum wells and dots. The program followed the tradition initiated at the 1991 conference in Cargese-France, the 1993 conference in Whistler, B. C. Canada, and the 1995 conference in Kibbutz Ginosar, Israel. Intersubband transitions in quantum wells and quantum dots have attracted considerable attention in recent years, mainly due to the promise of various applications in the mid- and far-infrared regions (2-30 J. lm). Over 40 invited and contributed papers were presented in this four-day workshop, with topics covered most aspects of the intersubband transition phenomena including: the basic intersubband transition processes, multiquantum well infrared photodetector (QWIP) physics, large format (640x480) GaAs QWIP (with 9. 0 J. lffi cutoff) focal plane arrays (FPAs) for IR imaging camera applications, infrared modulation, intersubband emission including mid- and long- wavelength quantum cascade (QC) lasers such as short (A. "" 3. 4 J. lm) and long (A. "" 11. 5 J. lm) wavelength room temperature QC lasers, quantum fountain intersubband laser at 15. 5 J. lm wavelength in GaAs/AIGaAs quantum well, harmonic generation and nonlinear effects, ultra-fast phenomena such as terahertz (THz) intersubband emission and detection. The book divides into five Chapters.
The series of texts on Classical Theoretical Physics is based on the highly successful series of courses given by Walter Greiner at the Johann Wolfgang Goethe University in Frankfurt am Main, Germany. Intended for advanced undergraduates and beginning graduate students, the volumes in the series provide not only a complete survey of classical theoretical physics but also an enormous number of worked examples and problem to show students clearly how to apply the abstract principles to realistic problems.
Catalytic reactions on metals are still nowadays involved in more than half of the chemical industrial processes. The winter school held at "I 'Ecole de in March 1996, 13 years after the first one, accounts Physique des Houches" for an evolution of the field in several directions. First, the emulation between theoretical chemistry and solid state physics has emerged on heuristic concepts, leading not only to explanations of the observed phenomena but, for the first time, to predictions of the reactivity of catalytic systems and of the reaction pathways. The second domain which during these years has become of primary importance is the abatement of the pollution. It concerns not only the conversion of polluting effluents but more and more major modifications of the processes to avoid the production of undesired products. Two striking examples are the necessary catalytic conversion of the 100 000 cubic meter of hydrogen that would be produced in a major incident of a nuclear power plant and the replacement of the CFC. The valorization of agricultural supplies can already be considered as one of the major achievement of catalysis. Indeed, the carbon of biosustainable raw materials represents more than 2 orders of magnitude the amount extracted from fossil fuels each year. Moreover, the molecules are already highly functionalised in contrast with hydrocarbons which require costly steps to be converted to the same products. They are now of current use in the elaboration of cosmetics, vitamins, polymers, etc.
Ring Current Investigations offers a comprehensive description of ring current dynamics in the Earth's magnetosphere as part of the coupled magnetosphere-ionosphere system. In order to help researchers develop a deeper understanding of the fundamental physics of geomagnetic storms, it includes a detailed description of energetic charged particles injection, trapping, and loss. It reviews historical and recent advances in observations, measurements, theory and simulations of the inner magnetosphere and its coupling to the ionosphere and other surrounding plasma populations. In addition, it compares the physics of ring currents at other strongly magnetized planets in the solar system, specifically Jupiter, Saturn, Uranus and Neptune, with the ring current system at Earth. Providing a description of the most important space weather effects driven by inner magnetospheric energetic particles during geomagnetic storms and present capabilities for their nowcast and forecast, Ring Current Investigations is an important reference for researchers in geophysics and space science, especially related to plasma physics, the ionosphere and magnetosphere, solar-terrestrial relations, and spacecraft anomalies.
Barkhausen Noise for Nondestructive Testing and Materials Characterization in Low Carbon Steels presents a balanced approach, reviewing the disadvantages and advantages of using this technique and its comparison over other magnetic testing techniques. In addition, the book looks towards future applications of this technique, in particular, its industrial applications as a method for pipeline inspection, current advantages, and barriers to implementation. The book is suitable for materials scientists, researchers and engineers, and may be applicable for those working in metallurgical plants. Not only does the book discuss fundamentals, it reviews recent discoveries, such as the correlation between magnetocrystalline energy and Barkhausen noise, the modeling of this relationship, and the application of this technique in the characterization of magnetic materials.
This book provides an introductory yet comprehensive account of James Clerk Maxwell's (1831-79) physics and world view. The argument is structured by a focus on the fundamental themes that shaped Maxwell's science: analogy and geometry, models and mechanical explanation, statistical representation and the limitations of dynamical reasoning, and the relation between physical theory and its mathematical description. This approach, which considers his physics as a whole, bridges the disjunction between Maxwell's greatest contributions: the concept of the electromagnetic field and the kinetic theory of gases. Maxwell's work and ideas are viewed historically in terms of his indebtedness to scientific and cultural traditions, of Edinburgh experimental physics, and of Cambridge mathematics and philosophy of science, which nurtured his career. Peter M. Harman is Professor of the History of Science at Lancaster University. He has published primarily on the history of physics and natural philosophy in the 18th and 19th centuries, the period from Newton to Maxwell. His previous books include Energy, Force, and Matter (Cambridge, 1982), The Investigation of Difficult Things (Cambridge, 1992), After Newton: Essays on Natural Philosophy (Variorum, 1993), The Scientific Letters and Papers of James Clerk Maxwell, volume 1 (Cambridge, 1990), volume 2 (Cambridge, 1995).
Market: Scientists, engineers, and graduate students in atomic physics, astrophysics, spectroscopy, atmospheric and solid state physics, and semiconductor research. Drawn from the author's lectures to undergraduates at Oxford University, this 1955 work features probing analyses of many problems in atomic physics, plasma physics, spectroscopy, atmospheric and solid state physics. By emphasizing fundamental concepts and the limitations of treatments rather than the details of theories, this book has become a valued reference tool both in academia and among professionals in the scientific community.
This volume contains four sections in addition to the previous sections of electrodynamics II, which were concerned with the two-particle problem, and applications to hydrogenic atoms, positronium, and muonium. Although the major objective here is an improved treatment of the electron magnetic moment, attention is also given to the effect of string magnetic fields, to an extended treatment of photon propagation function, and to a confrontational discussion on the pion decay into two photons.
This book highlights principles and applications of electromagnetic compatibility (EMC). After introducing the basic concepts, research progress, standardizations and limitations of EMC, the book puts emphasis on presenting the generation mechanisms and suppression principles of conducted electromagnetic interference (EMI) noise, radiated EMI noise, and electromagnetic susceptibility (EMS) problems such as electrostatic discharge (ESD), electric fast transient (EFT) and surge. By showing EMC case studies and solved examples, the book provides effective solutions to practical engineering problems. Students and researchers will be able to use the book as practical reference for EMC-related measurements and problem- solution.
The experimental discovery of the fractional quantum Hall effect (FQHE) at the end of 1981 by Tsui, Stormer and Gossard was absolutely unexpected since, at this time, no theoretical work existed that could predict new struc tures in the magnetotransport coefficients under conditions representing the extreme quantum limit. It is more than thirty years since investigations of bulk semiconductors in very strong magnetic fields were begun. Under these conditions, only the lowest Landau level is occupied and the theory predicted a monotonic variation of the resistivity with increasing magnetic field, depending sensitively on the scattering mechanism. However, the ex perimental data could not be analyzed accurately since magnetic freeze-out effects and the transitions from a degenerate to a nondegenerate system complicated the interpretation of the data. For a two-dimensional electron the positive background charge is well separated from the two gas, where dimensional system, magnetic freeze-out effects are barely visible and an analysis of the data in the extreme quantum limit seems to be easier. First measurements in this magnetic field region on silicon field-effect transistors were not successful because the disorder in these devices was so large that all electrons in the lowest Landau level were localized. Consequently, models of a spin glass and finally of a Wigner solid were developed and much effort was put into developing the technology for improving the quality of semi conductor materials and devices, especially in the field of two-dimensional electron systems."
This monograph presents electric therapy for the reduction of pain in a different way than the classical well known manner to use electric currents of various kinds for this purpose. It started when Melzack and Wall published their theory of pain. But contrary to most researchers, the author looked for a proof which objectively could demonstrate, that electric current would have an influence on nerve fibers conducting pain. Starting from this model of demonstration, an optimal type of current could be selected as well as optimal electrode positions and sizes of electrodes. It is an absolute new approach presenting the results of applying the type of current to more than 17.000 patients suffering from any kind of pain. Anatomic sketches and photo-documentation of electrode positions for many conditions allow the reader to obtain identical degree of pain reduction as the author describes from his great experience. In addition, a brief theoretical introduction and discussion of the influence of weather on pain is given. Practical forms for the management of pain are presented in an appendix. 256 references and a table of suitable apparatus with their essential technical characteristics facilitates correct application of this new principle.
Conquering the Electron offers readers a true and engaging history of the world of electronics, beginning with the discoveries of static electricity and magnetism and ending with the creation of the smartphone and the iPad. This book shows the interconnection of each advance to the next on the long journey to our modern-day technologies. Exploring the combination of genius, infighting, and luck that powered the creation of today's electronic age, Conquering the Electron debunks the hero worship so often plaguing the stories of great advances. Want to know how AT&T's Bell Labs developed semiconductor technology-and how its leading scientists almost came to blows in the process? Want to understand how radio and television work-and why RCA drove their inventors to financial ruin and early graves? Conquering the Electron offers these stories and more, presenting each revolutionary technological advance right alongside blow-by-blow personal battles that all too often took place.
Professor Dobbs provides an elegant and clear account of the subject, leading the student from electrostatics through to Maxwell's equations and electromagnetic waves, covering all the material needed by a student taking courses on electricity and magnetism and electromagnetic waves.
'The text provides an interesting history of previous and anticipated accomplishments, ending with a chapter on the relationship of fusion power to nuclear weaponry. They conclude on an optimistic note, well worth being understood by the general public.'CHOICEThe gap between the state of fusion energy research and public understanding is vast. In an entertaining and engaging narrative, this popular science book gives readers the basic tools to understand how fusion works, its potential, and contemporary research problems.Written by two young researchers in the field, The Future of Fusion Energy explains how physical laws and the Earth's energy resources motivate the current fusion program — a program that is approaching a critical point. The world's largest science project and biggest ever fusion reactor, ITER, is nearing completion. Its success could trigger a worldwide race to build a power plant, but failure could delay fusion by decades. To these ends, this book details how ITER's results could be used to design an economically competitive power plant as well as some of the many alternative fusion concepts.
Lightning Physics and Lightning Protection presents a comprehensive and up-to-date review of lightning, including its hazards and protection techniques. The authors first discuss the effectiveness of conventional protective measures, supply technical advice and practical recommendations, and explore the prospects for the preventive control of a lightning leader, followed by a discussion of the initiation of a leader and return stroke and subsequent components. After including measurements useful for understanding lightning and its effects, the book describes the mechanism of lightning discharge processes. It then examines the effects of large aircraft, high-voltage lines, and other high-altitude constructions on lightning trajectory and leader attraction. The book concludes by studying the action of lightning's electrical and magnetic fields and the lightning current on industrial premises, power transmission lines, underground communications, aircraft and their electrical circuits, and the induction of a dangerous overvoltage. A clear, straightforward, and systematic presentation of complicated material, Lightning Physics and Lightning Protection provides deep insight into the physics of lightning, simple analytical estimates, and a detailed illustration of effects by computer simulation, making this resource essential for those who investigate lightning phenomena and who have to solve practical protection problems.
Our life is a highly nonlinear process. It starts with birth and ends with death; in between there are a lot of ups and downs. Quite often, we believe that stable and steady situations, probably easy to capture by linearization, are paradisiacal, but already after a short period of everyday routine we usually become bored and seek change, that is, nonlinearities. If we reflect for a while, we notice that our life and our perceptions are mainly determined by nonlinear phenomena, for example, events occurring suddenly and unexpectedly. One may be surprised by how long scientists tried to explain our world by models based on a linear ansatz. Due to the lack of typical nonlinear patterns, although everybody experienced nonlinearities, nobody could classify them and, thus, . study them further. The discoveries of the last few decades have finally provided access to the world of nonlinear phenomena and have initiated a unique inter disciplinary field of research: nonlinear science. In contrast to the general tendency of science to become more branched out and specialized as the result of any progress, nonlinear science has brought together many different disciplines. This has been motivated not only by the immense importance of nonlinearities for science, but also by the wonderful simplicity ohhe concepts. Models like the logistic map can be easily understood by high school students and have brought revolutionary new insights into our scientific under standing."
This booklet presents a study of one-dimensional waves in solids which can be modelled by nonlinear wave equations of different types. The factorization method is the main tool in this analysis. It allows for an exact or at least asymp totic decomposition of the wave(s) under consideration in terms of first order multipliers. Chapter 1 provides a general introduction. It presents some well-known results on characteristics, Riemann invariants, simple waves, etc. The main result of Chap. 1 is Theorem 1.3.2. (Sect. 1.3.2) which establishes the possibility of exact factorization of the nonlinear wave equation EPa(a) 1 EPa _ 0 Ij(l-u- x2 with constant coefficients. This theorem permits one to construct further factor izations of more complicated wave equations which the reader will meet in the following chapters. Chapter 2 is devoted to short wave processes in inhomogeneous media, the main result being the uniform asymptotic factorization of nonlinear wave equa tions with variable coefficients and the description of corresponding single-wave processes without the usual assumption of a small wave amplitude."
Electrophotography and Development Physics focuses on the complicated and increasingly important technology found in photocopiers and laser printers. An introduction chapter acquaints the reader with the technical history of electrophotography, its current and projected markets, and also alternative related copying and printing technologies. A concise descriptionof the physics of the complete electrophotgraphic process is followed by an in-depth treatment of static electricity. The three types of developmentsystems (two component, monocomponent, and liquid), and their associated charging mechanisms. In this second edition, a discussion of the new color copiers and a chapter updating the original material have been added. On mastering this material, which is presented in a manner suitable for both the newcomer and the established expert, the reader will have a workingknowledge of the electrophotographic process and a detailed knowledge of its important subsystem, development.
In dem 2-bandigen Standardwerk erlautert der Autor die verschiedenen Techniken, die instrumentelle Ausrustung sowie die Bedeutung der Laserspektroskopie fur ein detailliertes Verstandnis der Struktur und Dynamik von Atomen und Molekulen. Band 2 ist den experimentellen Techniken gewidmet. Die Neuauflage wurde voellig uberarbeitet, viele Abschnitte zu aktuellen Themen wie Ultrakurzzeit-Spektroskopie, Attosekunden-Laser, Interferenzspektroskopie oder Laser-Interferometer als Detektoren fur Gravitationswellen auf den neuesten Stand gebracht.
Advances in the physics and chemistry of low-dimensional systems have been really magnificent in the last few decades. Hundreds of quasi-one-dimensional and quasi-two-dimensional systems have been synthesized and studied. The most popular representatives of quasi-one-dimensional materials are polyacethylenes CH 1] and conducting donor-acceptor molecular crystals TIF z TCNQ. Examples of quasi-two-dimensional systems are high temperature su perconductors (HTSC) based on copper oxides LA2CU04, YBa2Cu306+y and organic superconductors based on BEDT -TIP molecules. The properties of such one- and two-dimensional materials are not yet fully understood. On the one hand, the equations of motion of one-dimensional sys tems are rather simple, which facilitates rigorous solutions of model problems. On the other hand, manifestations of various interactions in one-dimensional systems are rather peculiar. This refers, in particular, to electron--electron and electron-phonon interactions. Even within the limit of a weak coupling con stant electron--electron correlations produce an energy gap in the spectrum of one-dimensional metals implying a Mott transition from metal to semiconductor state. In all these cases perturbation theory is inapplicable. Which is one of the main difficulties on the way towards a comprehensive theory of quasi-one-dimensional systems. - This meeting held at the Institute for Theoretical Physics in Kiev May 15-18 1990 was devoted to related problems. The papers selected for this volume are grouped into three sections."
"High-Tc Superconductivity" is based on a meeting held in Kiev and contains contributions discussing the most recent achievements in this field. The book includes reviews and original papers covering theoretical and experimental aspects of the subject. Keywords: electronic and magnetic properties, metallization processes, emission and optic spectra, lavitation, pinning, frustration and fluctuations, thin films
During the last decades the knowledge of the magnetic properties of the d transition elements and of their metallic alloys and compounds has increased widely. The improvement of preparation techniques for well-defined substances, the development of sophisticated measuring methods and above all the drive to obtain more insight in the origin of magnetic interactions in solids have resulted in the publication of many specific magnetic properties for an abundance of all kinds of metallic materials. The data assembled in this booklet are selected from the comprehensive compilation of magnetic and related properties of metals in the Landolt-Bornstein New Series Group III sub volumes 19a, band c. It has been attempted to include preferentially those properties which are of a basic character and which therefore are most often needed by scientists active in the field of solid state magnetism. In the field of magnetism, there is a gradual transition from the use of cgs/emu units to SI units. It was, however, not intended to represent all data in the units of one system, regardless of how nice this would have been from a systematic point of view. Instead, mostly preference was given to the system of units that was originally used by the authors whose work is quoted. Thus cgs/ emu units occur most frequently. Of colirse the user of the tables and figures is helped in several ways to convert the data to the units which he is most familiar with, see, e. g."
This volume contains extended abstracts of the 10 plenary lectures, 27 invited symposium lectures and ap- proximately 300 contributed papers that were presented at the 25th Congress Ampere. The contributions cover the full range of magnetic resonance and radiospectroscopy and their applications in physics, chemical physics, medicine and biology. Advanced NMR and ESR techniques are treated, as are their applications to novel materials. |
![]() ![]() You may like...
Pentecostalism and Catholic Ecumenism In…
John Segun Odeyemi
Hardcover
Beat Cancer Kitchen - Deliciously Simple…
Chris Wark, Micah Wark
Paperback
The Death Of Democracy - Hitler's Rise…
Benjamin Carter Hett
Paperback
![]()
Food Security, Poverty and Nutrition…
Suresh Babu, Shailendra Gajanan
Hardcover
|