![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Electricity, magnetism & electromagnetism
Physics of Semiconductor Devices covers both basic classic topics
such as energy band theory and the gradual-channel model of the
MOSFET as well as advanced concepts and devices such as MOSFET
short-channel effects, low-dimensional devices and single-electron
transistors. Concepts are introduced to the reader in a simple way,
often using comparisons to everyday-life experiences such as simple
fluid mechanics. They are then explained in depth and mathematical
developments are fully described.
This book presents a phenomenological approach to the field of solid state magnetism. After introducing the basic concepts from statistical thermodynamics and electronic structure theory, the first part discusses the standard models for localized moments (Weiss, Heisenberg) and delocalized moments (Stoner). This is followed by a chapter about exchange and correlation in metals, again considering the results for the localized and delocalized limit. The book ends with a chapter about spin fluctuations, which are introduced as an alternative to the finite temperature Stoner theory. The book will be a useful reference for researchers and a valuable accompaniment to graduate courses on magnetism and magnetic materials.
This is the first biography of William Shockley, founding father of Silicon Valley - one of the most significant and reviled scientists of the 20th century. Drawing upon unique access to the private Shockley archives, veteran technology historian and journalist Joel Shurkin gives an unflinching account of how such promise ended in such ignominy.
This is an introduction to the quantum theory of light and its broad implications and applications. A significant part of the book covers material with direct relevance to current basic and applied research, such as quantum fluctuations and their role in laser physics and the theory of forces between macroscopic bodies (Casimir effects). The book includes numerous historical sidelights throughout, and approximately seventy exercises. The book provides detailed expositions of the theory with emphasis on general physical principles. Foundational topics in classical and quantum electrodynamics are addressed in the first half of the book, including the semiclassical theory of atom-field interactions, the quantization of the electromagnetic field in dispersive and dissipative media, uncertainty relations, and spontaneous emission. The second half begins with a chapter on the Jaynes-Cummings model, dressed states, and some distinctly quantum-mechanical features of atom-field interactions, and includes discussion of entanglement, the no-cloning theorem, von Neumann's proof concerning hidden variable theories, Bell's theorem, and tests of Bell inequalities. The last two chapters focus on quantum fluctuations and fluctuation-dissipation relations, beginning with Brownian motion, the Fokker-Planck equation, and classical and quantum Langevin equations. Detailed calculations are presented for the laser linewidth, spontaneous emission noise, photon statistics of linear amplifiers and attenuators, and other phenomena. Van der Waals interactions, Casimir forces, the Lifshitz theory of molecular forces between macroscopic media, and the many-body theory of such forces based on dyadic Green functions are analyzed from the perspective of Langevin noise, vacuum field fluctuations, and zero-point energy.
In the quest for higher data density in information technology manipulation of magnetization by other means than magnetic fields has become an important challenge. This lead to a startling revival of the magnetoelectric effect, which characterizes induction of a polarization by a magnetic field or of a magnetization by an electric field. The magnetoelectric crosslink of material properties opens just those degrees of freedom which are needed for the mutual control of magnetic and electric states. The book gives a state-of-the-art review on magnetoelectrics research, classifies current research tendencies, and points out possible future trends. Novel compounds and growth techniques and new theoretical concepts for the understanding of magnetoelectric coupling phenomena are introduced. Highlights are the discovery of "gigantic" magnetoelectric effects which are strong enough to trigger electric or magnetic phase transitions; the concept of magnetochirality; and development "structural" magnetoelectric effects in artificial multiphase compounds. The book is addressed to condensed-matter physicists with a particular focus on experts in highly correlated systems.
Most recent publications on spin-related phenomena focus on technological aspects of spin-dependent transport, with emphasis on the specific needs of spintronics. The present publication targets rather fundamental problems related to the physics of spin in solids, such as: (1) manifestation of spin and orbital polarization in spectroscopy, including valence and X-ray photoemission, magneto-optics, low-energy electron scattering on the surface; (2) application of new methods for interpretation and determination of magnetic low-lying excitations in the bulk and on the surface; (3) recent progress in evaluation of different type of magnetic forces including spin-orbit and exchange interaction, with subsequent determination of anisotropy and spin-ordering structure; (4) general problems of spin-dependent transport in semiconductors and metals, such as current-caused torque effect on spins at interfaces and spin injection in quantum dot systems; (5) problems in understanding the spin-dependent trends in unconventional superconductors; (6) many-body problems in solid state physics and recent progress in evaluation of self-energy effects; (7) fabrication of new magnetic materials with pre-programmed properties based on assembly from nano-particles, etc.
Interest in research on nanoscale materials is steadily increasing: nano-structured magnetic materials exhibit new and interesting physical properties, which cannot be found in the bulk. Many of these unique properties have great potential for technical applications in magneto-sensors, bio-sensors, magneto-electronics, data storage, magnetic heads of computer hard disks, single-electron devises, microwave electronic devices, etc. Current research concentrates on device design, synthesis and the characterization of nanostructured materials. The contributions to this book concentrate on magnetic properties of nanoscale magnetic materials, especially on fabrication and characterization, and the physics underlying the unique properties of these structures and devices.
Magneto-Optical Imaging has developed rapidly over the last decade to emerge as a leading technique to directly visualise the static and dynamic magnetic behaviour of materials, capable of following magnetic processes on the scale of centimeters to sub-microns and at timescales from hours to nanoseconds. The images are direct, real-time, and give space-resolved information, such as ultrafast magnetic processes and revealing the motion of individual vortices in superconductors. The book is a fully up-to-date report of the present status of the technique.
The book covers different aspects of the chemistry and physics of molecular materials, including organic synthesis of specific organic donors and ligands, organic metals and superconductors, molecule-based magnets, multiproperty materials and organic-inorganic hybrids. The 17 chapters are written by some of the most authoritative authors in their field. The two last chapters are devoted to molecular electronics and devices, in particular the achievements and potential for applications. An excellent work for all students and researchers in organic conductors, superconductors and molecule based magnets.
Based on courses given at the Ecole Polytechnique in France, this book covers not only the fundamental physics of semiconductors, but also discusses the operation of electronic and optical devices based on semiconductors. It is aimed at students with a good background in mathematics and physics, and is equally suited for graduate-level courses in condensed-matter physics as for self-study by engineers interested in a basic understanding of semiconductor devices.
On the the mathematical aspects of the theory of carrier transport in semiconductor devices. The subjects covered include hydrodynamical models for semiconductors based on the maximum entropy principle of extended thermodynamics, mathematical theory of drift-diffusion equations with applications, and the methods of asymptotic analysis.
This two-volume work forms a comprehensive treatise on the theory and applications of electron-diffraction techniques, and has been organized under the auspices of the Electron Diffraction Commission of the International Union of Crystallography. All those embarking on research which involves the use of electron diffraction methods, including graduate students and more experienced researchers who wish to add electron diffraction to their array of research tools will find this an invaluable reference. Volume 1 contains introductory chapters and the sections on electron diffraction which are less dependent on considerations of imaging in electron microscopes. Volume 2 deals with those aspects where there is a stronger correlation of the diffraction phenomena with the electron microscope imaging.
Bonded magnets are the fastest growing sector in the entire market for magnetic materials. Their great advantages lie in the cost effective net-shape manufacturing process allowing the achievement of complex geometries and their isotropic magnetic properties. Energy products have more than quadrupled in recent years, too. The contributors to this volume present the current and future status of bonded magnets, including total world production and distribution, the markets involved, and the status of current and future applications. Current novel processing techniques are described and new developments reported, including powder production techniques, jet casting/melt spinning, atomization and DDDR processes. The different types of bonded magnets reviewed include isotropic and anisotropic neodymium-iron-boron, nanocomposites, Sm-Fe interstitial nitrides, Sm-Co and ferrites.
A comprehensive collection of papers on theoretical aspects of electronic processes in simple and synthetic metals, superconductors, bulk and low-dimensional semiconductors under extreme conditions, such as high magnetic and electric fields, low and ultra-low temperatures. The main emphasis is on low-dimensional conductors and superconductors, where correlated electrons, interacting with magnetic or nonmagnetic impurities, phonons, photons, or nuclear spins, result in a variety of new physical phenomena, such as quantum oscillations in the superconducting state, Condon instability, Skyrmions and composite fermions in quantum Hall effect systems, and hyperfine field-induced mesoscopic and nanoscopic phenomena. Several new experimental achievements are reported that promise to delineate future trends in low temperature and high magnetic field physics, including the experimental observation of the interplay between superconductivity and nuclear spin ordering at ultra-low temperatures, new observations of Condon domains in normal metals, and an experimental proposal for the realisation of isotopically engineered, semiconductor-based spin-qubit elements for future quantum computation and communication technology.
The Poincare Seminar is held twice a year at the Institut Henri
Poincare in Paris. This volume contains the lectures of the 2002
seminars. The main topic of the first one was the vacuum energy, in
particular the Casimir effect and the nature of the cosmological
constant. The second one concentrated on renormalization, giving a
comprehensive account of its mathematical structure and
applications to high energy physics, statistical mechanics and
classical mechanics.
Mossbauer spectroscopy is uniquely able to probe hyperfine interactions by looking at the short-range order of resonant atoms. Materials containing an appropriate isotope as one of their constituent atoms, such as iron or tin, are readily investigated. But even materials that do not contain Mossbauer-active atoms can be investigated if the probe atoms are incorporated in minor quantities (ca. 0.1 at.-%) to act as molecular-level indicators. These 35 papers collected here represent a state-of-the-art description of Mossbauer spectroscopy techniques applied to advanced materials. The topics covered comprise investigations of nanomaterials, nanoparticles, and quasicrystals, artificially structured materials as well as applications of Mossbauer spectroscopy in chemistry, mineralogy and metallurgy. The main aim of is the dissemination of information on research and recent developments of the method in materials science as obtained in leading Mossbauer laboratories. "
This book addresses the most advanced to-date mathematical approach and numerical methods in electromagnetic field theory and wave propagation. It presents the application of developed methods and techniques to the analysis of waves in various guiding structures -shielded and open metal-dielectric waveguides of arbitrary cross-section, planar and circular waveguides filled with inhomogeneous dielectrics, metamaterials, chiral media, anisotropic media and layered media with absorption. It also looks into spectral properties of wave propagation for the waveguide families being considered, and the relevant mathematical techniques such as spectral theory of non-self-adjoint operator-valued functions are described, including rigorous proofs of the existence of various types of waves. Further, numerical methods constructed on the basis of the presented mathematical approach and the results of numerical modeling for various structures are also described in depth. The book is beneficial to a broad spectrum of readers ranging from pure and applied mathematicians in electromagnetic field theory to researchers and engineers who are familiar with mathematics. Further, it is also useful as a supplementary text for upper-level undergraduate students interested in learning more advanced topics of mathematical methods in electromagnetics.
The contributions in this book by leading international experts in the field of electromagnetic field computation cover a wide area of contemporary research activities. They clearly underline the important role of modeling, analysis and numerical methods to provide powerful tools for the simulation of electromagnetic phenomena. The main topics range from the mathematical analysis of Maxwell's equations including its proper spatial discretizations (edge elements, boundary element methods, finite integration), and efficient iterative solution techniques (multigrid, domain decomposition) to multiscale aspects in micromagnetics. The reader will get acquainted with many facets of modern computational techniques and its applications to relevant problems in electromagnetism.
This is the first volume of a comprehensive two-volume treatise on superconductivity that represents the first such publication since the earlier work by R. Parks. It systematically reviews the basic physics and recent advances in the field. Leading researchers describe the state of the art in conventional phonon-induced superconductivity, high-Tc superconductivity, and novel superconductivity. After an introduction and historical overview, the leaders in the special fields of research give a comprehensive survey of the basics and the state of the art in chapters covering the entire field of superconductivity, including conventional and unconventional superconductors. Important new results are reported in a manner intended to stimulate further research. Numerous illustrations, diagrams and tables make this book especially useful as a reference work for students, teachers, and researchers. The second volume treats novel superconductors.
This book is an introduction to terrestrial magnetohydrodynamics. It is a compendium of introductory lectures by experts in the field, focussing on applications in industry and the laboratory. A concise overview of the subject with references to further study.
This is the first book presenting a coherent theoretical and experimental treatment of the rapidly developing field of macroscopic quantum tunneling of the magnetic moment. The theory is based on the concept of the magnetic instanton and its renormalization by the dissipative environment. The book includes discussions of the tunneling of magnetic moment in small ferromagnetic grains, tunneling of the Ne'el vector in antiferromagnetic grains, quantum nucleation of magnetic domains, and quantum depinning of domain walls. The experimental part collects the majority of recent data that are, or may be, relevant to spin tunneling. Among the topics described are low temperature magnetic relaxation and its interpretation in various systems, experiments on single particles and mesoscopic wires, and resonant spin tunneling in molecular magnets. This study of an important new field in condensed matter physics by two leading contributors to the subject will be of interest to theorists and experimentalists alike.
This second edition of a textbook for advanced undergraduate and graduate students of geophysics reflects the most recent research on the natural magnetic fields in and surrounding the Earth arising from a variety of electric currents. Readers are introduced to the instrumentation for measuring geomagnetic fields, and to the applications of these techniques. Designed for use in a semester course, the volume includes student exercises at the end of each chapter. First Edition Hb (1997): 0-521-57193-6
New Trends in Superconductivity contains up-to-date papers covering the most exciting current topics in superconductivity research. The main areas include cuprate superconductivity, covering mechanisms, pairing symmetry, pseudogap, stripes, growth and synthesis; novel superconductors, including MgB2, Sr2RuO4, borocarbides and C60-based systems; and mesoscopic superconductors and vortex matter, including vortex structure, type II superconductors, macroscopic quantum coherence and qubit devices and multilayer systems. A useful, up-to-date reference of current research in all of these rapidly developing fields of superconductivity.
Detailed coverage of all aspects of microwave superconductivity: fundamentals, fabrication, measurement, components, circuits, cryogenic packaging and market potential. Both a graduate-level textbook and a reference for microwave engineers. Applications (with either active or passive circuit elements) include those at both liquid-helium and liquid-nitrogen temperatures. Topics covered include wireless communications, space-based cryoelectronics, SQUIDs and SQUID amplifiers, NMR and MRI coils, accelerator cavities, and Josephson flux-flow devices. |
![]() ![]() You may like...
The Insula of the Menander at Pompeii…
Penelope M. Allison
Hardcover
R12,290
Discovery Miles 122 900
A Brief Account of the Rise, Progress…
Princeton Theological Seminary
Paperback
R409
Discovery Miles 4 090
Player Development - The Holistic Method
John Cone, Gareth Smith
Paperback
R1,275
Discovery Miles 12 750
Journal of the Common Council of the…
Philadelphia Common Council
Paperback
R770
Discovery Miles 7 700
Algebra, Geometry and Mathematical…
Abdenacer Makhlouf, Eugen Paal, …
Hardcover
R3,178
Discovery Miles 31 780
|