Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Electricity, magnetism & electromagnetism
Advances in Imaging and Electron Physics merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
This book presents an investigation of the anomalous and topological Hall effects in some itinerant ferromagnets and helimagnets by measurements of Hall effects driven by electrical or heat current. New clarifications are provided for spin-dependent Hall effects induced by the Berry phase, skew scattering, and scalar spin chirality. The author reveals the scattering-free nature of the Berry-phase-induced anomalous Hall current by conducting the first comparative study of electrical and thermal Hall effects. The impurity-element dependence of the anomalous Hall effect caused by skew scattering is systematically investigated in the low-resistivity region for Fe. Two new examples showing a topological Hall effect are found in helimagnets, in which nonzero scalar spin chirality arises from the modulation of spin structure through Dzyaloshinsky-Moriya (DM) interaction. Such a DM-interaction-mediated topological Hall effect is a new type of topological Hall effect. Also the temperature dependence of topological Hall terms in the thermal Hall effect and Nernst-Ettingshausen effect is found to be totally different from that in the electrical Hall effect. These results will be useful for applications of spin current to devices with low power consumption.
For several years, the two parallel worlds of Molecular Conductors in one hand and Molecular Magnetism in the other have grown side by side, the former essentially based on radical organic molecules, the latter essentially based on the high spin properties of metal complexes. Over the last few years however, organometallic derivatives have started to play an increasingly important role in both worlds, and have in many ways contributed to open several passages between these two worlds. This volume recognizes this important emerging evolution of both research areas. It is not intended to give a comprehensive view of all possible organometallic materials, and polymers for example were not considered here. Rather we present a selection of the most recent research topics where organometallic derivatives were shown to play a crucial role in the setting of conducting and/or magnetic properties in crystalline materials. First, the role of organometallic anions in tet- thiafulvalenium-based molecular conductors is highlighted by Schlueter, while Kubo and Kato describe very recent ortho-metalated chelating ligands appended to the TTF core and their conducting salts. The combination of conducting and magnetic properties and the search for p-d interactions are analyzed in two comp- mentary contributions by Myazaki and Ouahab, while Valade focuses on the only class of metal bis(dithiolene) complexes to give rise to superconductive molecular materials, in association with organic as well as organometallic cations.
This book describes theoretical aspects of the metallic magnetism from metals to disordered alloys to amorphous alloys both at the ground state and at finite temperatures. The book gives an introduction to the metallic magnetism, and treats effects of electron correlations on magnetism, spin fluctuations in metallic magnetism, formation of complex magnetic structures, a variety of magnetism due to configurational disorder in alloys as well as a new magnetism caused by the structural disorder in amorphous alloys, especially the itinerant-electron spin glasses. The readers will find that all these topics can be understood systematically by means of the spin-fluctuation theories based on the functional integral method.
Presenting and developing the theory of spin glasses as a prototype for complex systems, this book is a rigorous and up-to-date introduction to their properties. The book combines a mathematical description with a physical insight of spin glass models. Topics covered include the physical origins of those models and their treatment with replica theory; mathematical properties like correlation inequalities and their use in the thermodynamic limit theory; main exact solutions of the mean field models and their probabilistic structures; and the theory of the structural properties of the spin glass phase such as stochastic stability and the overlap identities. Finally, a detailed account is given of the recent numerical simulation results and properties, including overlap equivalence, ultrametricity and decay of correlations. The book is ideal for mathematical physicists and probabilists working in disordered systems.
During the early nineteenth-century craze for conducting kite experiments in lightning, deaths were not unheard of. Electrical physicists, meanwhile, were often shocked badly enough to collapse in the course of their work. However, the perils of electricity did not deter its proponents. Published in 1844, this enlarged collection of lectures by Henry Minchin Noad (1815 77) had proven immensely popular in earlier incarnations, eventually running to four editions and recognised as an invaluable textbook for electricians and telegraph engineers until the turn of the century. An electrical practitioner himself, Noad includes illustrated explanations of some of the most significant ideas in the field, and describes many of his own experiments, from his version of the lightning kite to a battery constructed with fifty jars and a thousand feet of wire. His work remains relevant to students in the history of science.
An electric arc is formed when a current passes between two conductors through a non-conducting medium like air. Although the phenomenon was discovered during early electrical experiments and utilised widely in lighting by the end of the nineteenth century, its problems were not fully understood. First published in 1902, this book represents one of the first systematic investigations of the electric arc, and the best-known work of suffragist and electrical engineer Hertha Ayrton (1854 1923). It includes a chapter on the history of the discovery, over a hundred illustrations and tables, and Ayrton's explanation of the enduring problem of arc instability. As a result of her research, she went on to patent anti-aircraft lights and new arc-lamp technology. She later became the first female recipient of the Royal Society's Hughes Medal. Remaining relevant to students of electrical engineering and the history of science, this book shares her insights and expertise.
Originally apprenticed to a bookbinder, Michael Faraday (1791 1867) began to attend Sir Humphrey Davy's chemistry lectures purely out of interest. Although he soon recognised that science would be his vocation, there was no defined career path to follow, and when he applied to Davy for work he was gently told to 'attend to the bookbinding'. It was only after a laboratory explosion in which Davy partially lost his sight that Faraday was taken on as his amanuensis. From this difficult beginning stemmed perhaps the most famous scientific career of the nineteenth century. This three-volume collection of Faraday's papers provides a comprehensive record of a key branch of his work. Volume 2, first published in 1844, includes essays on the illusions caused by lightning, the chemistry of a voltaic pile, and his defence against accusations that the idea behind his electromagnetic motor was stolen from another physicist.
Originally apprenticed to a bookbinder, Michael Faraday (1791 1867) began to attend Sir Humphrey Davy's chemistry lectures purely out of interest. Although he soon recognised that science would be his vocation, there was no defined career path to follow, and when he applied to Davy for work he was gently told to 'attend to the bookbinding'. It was only after a laboratory explosion in which Davy partially lost his sight that Faraday was taken on as his amanuensis. From this difficult beginning stemmed perhaps the most famous scientific career of the nineteenth century. This three-volume collection of Faraday's papers provides a comprehensive record of a key branch of his work. Volume 3, first published in 1855, includes his landmark paper on the effect of magnetism on light (known now as the Faraday Effect), work on the chemical implications of magnetism, and a fascinating speculation on a link between electricity and gravity.
In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of different aspects and scenarios. Macroscopic quantum electrodynamics is applied within the context of dispersion forces. In contrast to the normal-mode quantum electrodynamics traditionally used to study dispersion forces, the new approach allows to consider realistic material properties including absorption and is flexible enough to be applied to a broad range of geometries. Thus general properties of dispersion forces like their non-additivity and the relation between microscopic and macroscopic dispersion forces are discussed. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. In particular, nontrivial magnetic properties of the bodies, bodies of irregular shapes, the role of material absorption, and dynamical forces for excited atoms are discussed. This volume 2 deals especially with quantum electrodynamics, dispersion forces, Casimir forces, asymptotic power laws, quantum friction and universal scaling laws. The book gives both the specialist and those new to the field a thorough overview over recent results in the context of dispersion forces. It provides a toolbox for studying dispersion forces in various contexts.
This thesis describes a novel and robust way of deriving a Hamiltonian of the interacting boson model based on microscopic nuclear energy density functional theory. Based on the fact that the multi-nucleon induced surface deformation of finite nucleus can be simulated by effective boson degrees of freedom, observables in the intrinsic frame, obtained from self-consistent mean-field method with a microscopic energy density functional, are mapped onto the boson analog. Thereby, the excitation spectra and the transition rates for the relevant collective states having good symmetry quantum numbers are calculated by the subsequent diagonalization of the mapped boson Hamiltonian. Because the density functional approach gives an accurate global description of nuclear bulk properties, the interacting boson model is derived for various situations of nuclear shape phenomena, including those of the exotic nuclei investigated at rare-isotope beam facilities around the world. This work provides, for the first time, crucial pieces of information about how the interacting boson model is justified and derived from nucleon degrees of freedom in a comprehensive manner.
This thesis shows how a combination of analytic and numerical techniques, such as a time dependent and finite temperature Density Matrix Renormalization Group (DMRG) technique, can be used to obtain the physical properties of low dimensional quantum magnets with an unprecedented level of accuracy. A comparison between the theory and experiment then enables these systems to be used as quantum simulators; for example, to test various generic properties of low dimensional systems such as Luttinger liquid physics, the paradigm of one dimensional interacting quantum systems. Application of these techniques to a material made of weakly coupled ladders (BPCB) allowed the first quantitative test of Luttinger liquids. In addition, other physical quantities (magnetization, specific heat etc.), and more remarkably the spins-spin correlations - directly measurable in neutron scattering experiments - were in excellent agreement with the observed quantities. We thus now have tools to quantitatiively assess the dynamics for this class of quantum systems.
While magnetic fields permeate the universe on all scales, the present book is dedicated to their investigation on the largest scales and affords a balanced account of both theoretical and observational aspects. Written as a set of advanced lectures and tutorial reviews that lead up to the forefront of research, this book offers both a modern source of reference for the experienced researchers as well as a high-level introductory text for postgraduate students and nonspecialist researchers working in related areas.
This book presents selected topics on processing and properties of ferroelectric materials that are currently the focus of attention in scientific and technical research. Ferro-piezoelectric ceramics are key materials in devices for many applications, such as automotive, healthcare and non-destructive testing. As they are polycrystalline, non-centrosymmetric materials, their piezoelectricity is induced by the so-called poling process. This is based on the principle of polarization reversal by the action of an electric field that characterizes the ferroelectric materials. This book was born with the aim of increasing the awareness of the multifunctionality of ferroelectric materials among different communities, such as researchers, electronic engineers, end-users and manufacturers, working on and with ferro-piezoelectric ceramic materials and devices which are based on them. The initiative to write this book comes from a well-established group of researchers at the Laboratories of Ferroelectric Materials, Materials Science Institute of Madrid (ICMM-CSIC). This group has been working in different areas concerning thin films and bulk ceramic materials since the mid-1980s. It is a partner of the Network of Excellence on Multifunctional and Integrated Piezoelectric Devices (MIND) of the EC, in which the European Institute of Piezoelectric Materials and Devices has its origin.
Dielectric Properties of Agricultural Materials and Their Applications provides an understanding of the fundamental principles governing dielectric properties of materials, describes methods for measuring such properties, and discusses many applications explored for solving industry problems. The information in this reference stimulates new research for solving problems associated with production, handling, and processing of agricultural and food products. Anyone seeking a better understanding of dielectric properties of materials and application of radio-frequency and microwave electromagnetic energy for solution of problems in agriculture and related fields will find this an essential resource.
The aim of this work is to bridge the gap between the well-known Newtonian mechanics and the studies on chaos, ordinarily reserved to experts. Several topics are treated: Lagrangian, Hamiltonian and Jacobi formalisms, studies of integrable and quasi-integrable systems. The chapter devoted to chaos also enables a simple presentation of the KAM theorem. All the important notions are recalled in summaries of the lectures. They are illustrated by many original problems, stemming from real-life situations, the solutions of which are worked out in great detail for the benefit of the reader. This book will be of interest to undergraduate students as well as others whose work involves mechanics, physics and engineering in general.
Astrophysical dynamos are at the heart of cosmic magnetic fields of a wide range of scales, from planets and stars to entire galaxies. This book presents a thorough, step-by-step introduction to solar and stellar dynamos. Looking first at the ultimate origin of cosmic seed magnetic fields, the antagonists of field amplification are next considered: resistive decay, flux expulsion, and flows ruled out by anti-dynamo theorems. Two kinematic flows that can act as dynamos are then studied: the Roberts cell and the CP-flow. Mean-field electrodynamics and derivation of the mean-field dynamo equations lead to the alpha Omega-dynamo, the flux transport dynamo, and dynamos based on the Babcock-Leighton mechanism. Alternatives to the mean-field theory are also presented, as are global MHD dynamo simulations. Fluctuations and grand minima in the solar cycle are discussed in terms of dynamo modulations through stochastic forcing and nonlinear effects. The book concludes with an overview of the major challenges in understanding stellar magnetic fields and their evolution in terms of various dynamo models, global MHD simulations, and fossil fields. Each chapter is accompanied by an annotated bibliography, guiding the readers to the relevant technical literature, which may lead them to carry out their own research in the field of dynamo theory.
As technology matures, communication system operation regions shift from mic- wave and millimeter ranges to sub-millimeter ranges. However, device perf- mance at very high frequencies suffers drastically from the material de?ciencies. As a result, engineers and scientists are relentlessly in search for the new types of materials, and composites which will meet the device performance requirements and not present any de?ciencies due to material electrical and magnetic properties. Anisotropic and gyrotropic materials are the class of the materials which are very important in the development high performance microwave devices and new types composite layered structures. As a result, it is a need to understand the wave propagation and radiation characteristics of these materials to be able to realize them in practice. This book is intended to provide engineers and scientists the required skill set to design high frequency devices using anisotropic, and gyrotropic materials by providing them the theoretical background which is blended with the real world engineering application examples. It is the author's hope that this book will help to ?ll the gap in the area of applied electromagnetics for the design of microwave and millimeter wave devices using new types of materials. Each chapter in the book is designed to give the theory ?rst on the subject and solidify it with application examples given in the last chapter. The application examples for the radiation problems are given at the end of Chap. 5 and Chap. 6 for anisotropic and gyrotropic materials, respectively, after the theory section.
The third volume of this book addresses central aspects of spin-dynamic phenomena on a tutorial level. This volume concentrates on new experimental techniques such as ferromagnetic-resonance-force microscopy and two-photon photoemission. There is a chapter devoted to the hot subject of spin-transfer torque. The comprehensive presentation makes this a timely and valuable resource for every researcher working in the field of magnetism.
Proceedings of the Baroda Workshop on Nanomaterials, Magnetic Ions and Magnetic Semiconductors studied mostly by Hyperfine Interactions (IWNMS 2004), held in Baroda, India, 10-14 February, 2004. Researchers and graduate students interested in the application of hyperfine interaction techniques, mostly Moessbauer Effect and Perturbed Angular Correlations, to the fast developing fields of magnetic nanomaterials, magnetic ions and magnetic semiconductors will find this volume indispensable. The volume also addresses to the application of synchrotron radiation and ion beams to these systems.
In the past few decades, research in the science of electrodeposition of metals has shown the important practical applications of electronic, magnetic, energy devices and biomedical materials. The aim of this new volume is to review the latest developments electrodeposition and present them to teachers, professionals, and students working in the field.
The book describes the modern theory of light hydrogen-like systems. The discussion is based on quantum electrodynamics. Green's functions, relativistic bound-state equations and Feynman diagrams are extensively used. New theoretical approaches are described and explained. The book contains derivation of many theoretical results obtained in recent years. A complete set of all theoretical results for the energy levels of hydrogen-like bound states is presented.
This text on the electrical, optical, magnetic, and thermal properties of materials stresses concepts rather than mathematical formalism. Suitable for advanced undergraduates, it is intended for materials and electrical engineers who want to gain a fundamental understanding of alloys, semiconductor devices, lasers, magnetic materials, and so forth. The book is organized to be used in a one-semester course; to that end each section of applications, after the introduction to the fundamentals of electron theory, can be read independently of the others. Many examples from engineering practice serve to provide an understanding of common devices and methods. Among the modern applications covered are: high-temperature superconductors, optoelectronic materials, semiconductor device fabrication, xerography, magneto-optic memories, and amorphous ferromagnetics. The fourth edition has been revised and updated with an emphasis on the applications sections, which now cover devices of the next generation of electronics.
The articles in this volume provide a detailed review of all aspects of the main magnetic field of the Earth produced within the Earth's core: its past history, its long and short term changes, the way it is generated. The book contains the combined knowledge of geomagnetism coming from paleomagnetic and archeomagnetic data, centuries of terrestrial observations and from the past few decades of intensive space observations. There is considerable emphasis on the phenomenology and the physical processes of the evolution of the geomagnetic field on different timescales. The book reports fully on our understanding of the present state of the magnetic field and its expected evolution in the future.
Starting with the first transistor in 1949, the world has experienced a technological revolution which has permeated most aspects of modern life, particularly over the last generation. Yet another such revolution looms up before us with the newly developed capability to control matter on the nanometer scale. A truly extraordinary research effort, by scientists, engineers, technologists of all disciplines, in nations large and small throughout the world, is directed and vigorously pressed to develop a full understanding of the properties of matter at the nanoscale and its possible applications, to bring to fruition the promise of nanostructures to introduce a new generation of electronic and optical devices. The physics of low dimensional semiconductor structures, including heterostructures, superlattices, quantum wells, wires and dots is reviewed and their modeling is discussed in detail. The truly exceptional material, Graphene, is reviewed; its functionalization and Van der Waals interactions are included here. Recent research on optical studies of quantum dots and on the physical properties of one-dimensional quantum wires is also reported. Chapters on fabrication of nanowire - based nanogap devices by the dielectrophoretic assembly approach. The broad spectrum of research reported here incorporates chapters on nanoengineering and nanophysics. In its presentation of tutorial chapters as well as advanced research on nanostructures, this book is ideally suited to meet the needs of newcomers to the field as well as experienced researchers interested in viewing colleagues' recent advances. |
You may like...
Absolutism versus Relativity - Volume I…
Mohammad Javanshiry
Hardcover
R1,447
Discovery Miles 14 470
The Electron - Its Isolation and…
Robert Andrews 1868-1953 Millikan
Hardcover
R863
Discovery Miles 8 630
Wind Turbines - Advances and Challenges…
Karam Maalawi
Hardcover
|