![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Electricity, magnetism & electromagnetism
Gallium Arsenide and Related Compounds 1991emphasizes current results on the materials, characterization, and device aspects of a broad range of semiconductor materials, particularly the III-V compounds and alloys. The book is a valuable reference for researchers in physics, materials science, and electronics and electrical engineering who work on III-V compounds.
Physicists who wish to understand the modeling of confinement of quantum chromodynamics, as exhibited by dual superconductors, will find this book an excellent introduction. The author focuses on the models themselves, especially the Landau--Ginzburg model of a dual superconductor, also called the Dual Abelian Higgs model.
This review volume presents both basic and applied aspects of diluted magnetic semiconductors (DMS). The term DMS applies generally to semiconductors in which a fraction of its constituent ions are replaced by magnetic ions. This book is only the second to review DMS materials. It presents a detailed treatment of the current state of knowledge of the established properties of DMS in the form of single crystals, quantum wells and superlattices. It also brings together recent work on new DMS materials and presents discussions on a wide range of possible DMS applications.
Aimed at undergraduate and postgraduate students in physics and applied mathematics, this textbook has been constructed as a set of problems followed by detailed solutions. With its assortment of standard problems for beginners, variations on a theme and original problems based upon new trends and theories in physics, the book aims to help students understand practical aspects of the subject. Topics are grouped under the two main headings of fluid mechanics and the electrodynamics of continuous media. They include vectors, tensors and Fourier transformations, dielectric waves in media, natural optical activity, Cherenkov radiation, non-linear interaction of waves, dynamics of ideal fluids, convection, turbulence and acoustic and shock waves, the theory of elasticity and the mechanics of liquid crystals.
The main objective of the book is to highlight the modeling of magnetic particles with different shapes and magnetic properties, to provide graduate students and young researchers information on the theoretical aspects and actual techniques for the treatment of magnetic particles in particle-based simulations. In simulation, we focus on the Monte Carlo, molecular dynamics, Brownian dynamics, lattice Boltzmann and stochastic rotation dynamics (multi-particle collision dynamics) methods. The latter two simulation methods can simulate both the particle motion and the ambient flow field simultaneously. In general, specialized knowledge can only be obtained in an effective manner under the supervision of an expert. The present book is written to play such a role for readers who wish to develop the skill of modeling magnetic particles and develop a computer simulation program using their own ability. This book is therefore a self-learning book for graduate students and young researchers. Armed with this knowledge, readers are expected to be able to sufficiently enhance their skill for tackling any challenging problems they may encounter in future.
Superfluidity and Superconductivity, Third Edition introduces the low-temperature phenomena of superfluidity and superconductivity from a unified viewpoint. The book stresses the existence of a macroscopic wave function as a central principle, presents an extensive discussion of macroscopic theories, and includes full descriptions of relevant experimental results throughout. This edition also features an additional chapter on high-temperature superconductors. With problems at the end of most chapters as well as the careful elaboration of basic principles, this comprehensive survey of experiment and theory provides an accessible and invaluable foundation for graduate students studying low-temperature physics as well as senior undergraduates taking specialized courses.
The merging of the concept of introduction of asymmetry of the wave vector space of the charge carriers in semiconductors with the modern techniques of fabric- ing nanostructured materials such as MBE, MOCVD, and FLL in one, two, and three dimensions (such as ultrathin ?lms, nipi structures, inversion and accumu- tion layers, quantum well superlattices, carbon nanotubes, quantum wires, quantum wire superlattices, quantumdots, magnetoinversionand accumulationlayers, qu- tum dot superlattices, etc. ) spawns not only useful quantum effect devices but also unearth new concepts in the realm of nanostructured materials science and related disciplines. It is worth remaking that these semiconductor nanostructures occupy a paramount position in the entire arena of low-dimensional science and technology by their own right and ?nd extensive applications in quantum registers, resonant tunneling diodes and transistors, quantum switches, quantum sensors, quantum logic gates, heterojunction ?eld-effect, quantum well and quantum wire trans- tors, high-speed digital networks, high-frequency microwave circuits, quantum cascade lasers, high-resolution terahertz spectroscopy, superlattice photo-oscillator, advanced integrated circuits, superlattice photocathodes, thermoelectric devices, superlattice coolers, thin ? lm transistors, intermediate-band solar cells, micro- tical systems, high-performanceinfrared imaging systems, bandpass ?lters, thermal sensors, optical modulators, optical switching systems, single electron/molecule electronics, nanotube based diodes, and other nanoelectronic devices.
The book comprises six chapters which deal with the critical currents and the ferromagnetism-superconductivity coexistence in high-Tc oxides. It begins by gathering key data for superconducting state and the fundamental properties of the conventional superconductors, followed by a recap of the basic theories of superconductivity. It then discusses the differences introduced by the structural anisotropy on the Ginzburg-Landau approach and the Lawrence-Doniach model before addressing the dynamics of vortices and the ferromagnetism-superconductivity coexistence in high-Tc oxides, and provides an outline of the pinning phenomena of vortices in these materials, in particular the pinning of vortices by the spins. It elucidates the methods to improve the properties of superconducting materials for industrial applications. This optimization aims at obtaining critical temperatures and densities of critical currents at the maximum level possible. Whereas the primary objective is the basic mechanisms pushing the superconductivity towards high temperatures, the secondary objective is to achieve a better understanding of the vortices pinning. This book is targeted at researchers and graduate students of fundamental and engineering sciences.
This text is an introduction to some of the mathematical wonders of Maxwell's equations. These equations led to the prediction of radio waves, the realization that light is a type of electromagnetic wave, and the discovery of the special theory of relativity. In fact, almost all current descriptions of the fundamental laws of the universe can be viewed as deep generalizations of Maxwell's equations. Even more surprising is that these equations and their generalizations have led to some of the most important mathematical discoveries of the past thirty years. It seems that the mathematics behind Maxwell's equations is endless. The goal of this book is to explain to mathematicians the underlying physics behind electricity and magnetism and to show their connections to mathematics. Starting with Maxwell's equations, the reader is led to such topics as the special theory of relativity, differential forms, quantum mechanics, manifolds, tangent bundles, connections, and curvature.
This book details the lives of two married geniuses, Aden and Marjorie Meinel, who helped to pioneer modern optics and solar energy in the U.S. Aden B. Meinel and Marjorie P. Meinel stood at the confluence of several overarching technological developments during their lifetimes, including postwar aerial surveillance by spy planes and satellites, solar energy, the evolution of telescope design, interdisciplinary optics, and photonics. Yet, their incredible stories and their long list of scientific contributions have never been adequately recognized in one place. In this book, James Breckinridge and Alec M. Pridgeon correct this oversight by sharing the story of this powerful duo. The book follows their lives and covers large scientific developments between World War II to the Cold War. James B. Breckinridge, a previous advisee and later colleague to the Meinels, and historian and scientist Alec M. Pridgeon collected more than 200 hours of oral interviews with those who worked closely with the Meinels and some who built their careers around the findings made possible by their work. The book shares and analyzes the work done by the Meinels, and it also includes incredible insights from an unpublished Meinel autobiography.
Superconductivity of Metals and Cuprates covers the basic physics of superconductivity, both the theoretical and experimental aspects. The book concentrates on important facts and ideas, including Ginzburg-Landau equations, boundary energy, Green's function methods, and spectroscopy. Avoiding lengthy or difficult presentations of theory, it is written in a clear and lucid style with many useful, informative diagrams. The book is designed to be accessible to senior undergraduate students, making it a helpful tool for teaching superconductivity as well as serving as an introduction to those entering the field.
This book presents novel and fundamental aspects of metamaterials, which have been overlooked in most previous publications, including chirality, non-reciprocity, and the Dirac-cone formation. It also describes the cutting-edge achievements of experimental studies in the last several years: the development of high-regularity metasurfaces in optical frequencies, high-performance components in the terahertz range, and active, chiral, nonlinear and non-reciprocal metamaterials in the microwave range. Presented here are unique features such as tunable metamaterials based on the discharge plasma, selective thermal emission from plasmonic metasurfaces, and the classical analogue of the electromagnetically induced transparency. These most advanced research achievements are explained in understandable terms by experts in each topic. The descriptions with many practical examples facilitate learning, and not only researchers and experts in this field but also graduate students can read the book without difficulty. The reader finds how these new concepts and new developments are being utilized for practical applications.
A timely and authoritative guide to the state of the art of wave scattering Scattering of Electromagnetic Waves offers in three volumes a complete and up-to-date treatment of wave scattering by random discrete scatterers and rough surfaces. Written by leading scientists who have made important contributions to wave scattering over three decades, this new work explains the principles, methods, and applications of this rapidly expanding, interdisciplinary field. It covers both introductory and advanced material and provides students and researchers in remote sensing as well as imaging, optics, and electromagnetic theory with a one-stop reference to a wealth of current research results. Plus, Scattering of Electromagnetic Waves contains detailed discussions of both analytical and numerical methods, including cutting-edge techniques for the recovery of earth/land parametric information. The three volumes are entitled respectively Theories and Applications, Numerical Simulation, and Advanced Topics. In the second volume, Numerical Simulations, Leung Tsang (University of Washington) Jin Au Kong (MIT), Kung-Hau Ding (Air Force Research Lab), and Chi On Ao (MIT) cover:
The magnetosphere is the region in which the solar wind interacts with the Earth's magnetic field, the zone which screens the Earth from most of the harmful cosmic rays which daily bombard it. The Aurora Borealis, or Norhun lights, other such phenourena result from the interaction of particles in the solar wind and the magnetosphere. Planetary physicists, geophysicists, plasma astrophysicists, and scientists involved with astronautics all have a primary interest in the configuration and dynamics of the magnetosphere, and much research is devoted to convection (the circulation of solarwind plastma in the magnetiosphere) and substorms, which are linked to the aurorae and thought to stimulate convection. In this book, one of the leading scientists in the field presents a synthesis of current knowledge on convection and substorms and proposes that the Planetary physicists, geophysicists, plasma astrophysicists, and scientists involved with astronautics all have a primary interest in the configuration and dynamics of the magnetosphere, and much research is devoted to convection (the circulation of solarwind plastma in the magnetiosphere) and substorms, which are linked to the aurorae and thought to stimulate convection. In this book, one of the leading scientists in the field presents a synthesis of current knowledge on convection and substorms and proposes that the steady reconnection model be replaced by a model of multiple tail reconnection events, in which many mutually interdependent reconnections occur.
The inspiration for this book can be traced back many years to two major works that in?uenced the author's outlook on applied physics: FerromagnetismusbyR. Becker,W. D oring (Springer, Berlin 1939), and Ferromagnetism by R. M. Bozorth (IEEE Press, New York 1951). The former work is a collection of lectures held in the 1930s for 'technicians' attending a technical college. The German language in which the work was originally written was extremely convenient for the author of this present book, as it was for a long time the only comfortable technical language in an English speaking environment. Later on, upon encountering the work by Bozorth, it was a relief to see the clarity and eloquence of the subjects presented in English, despite the impressive thickness of the book. Bozorth's work still constitutes a practical review for anyone in a multidisciplinary industry who comes across the various manifestations of magnetism. The popularity of both works is so enduring that they are regarded as highly academic, and yet extremely readable, a reference in their own right, still attracting many readers these days in industry and academia. The ?eld of magnetism progressed immensely in the twentieth century, and shows no signs of slowing down in the present one. It has become so vast that it is quite often viewed only in its parts, rather than as a whole. In today'smyriadofapplications,especiallyonananoscale,andtheirchangeable implications mostly on a macroscale, it often seems that di?erent aspects of reported work on magnetism are scattered and unrelated.
Explore the spectrum of lidar engineering in this one-of-a-kind introduction. For the first time, this multidisciplinary resource covers all the scientific and engineering aspects of atmospheric lidar - including atmospheric science, spectroscopy, lasers and eye safety, classical optics and electro-optics, electrical and mechanical engineering, and software algorithms - in a single comprehensive and authoritative book. Discover up-to-date material not included in any other book, including simple treatments of the lidar crossover range and depolarization in lidar signals, an improved explanation of lidar data inversion algorithms, digital signal processing applications in lidar, and statistical limitations of lidar signal-to-noise ratios. This is an ideal standalone text for students seeking a thorough grounding in lidar, whether through a taught course or self-study.
Surface Impedance Boundary Conditions is perhaps the first effort to formalize the concept of SIBC or to extend it to higher orders by providing a comprehensive, consistent, and thorough approach to the subject. The product of nearly 12 years of research on surface impedance, this book takes the mystery out of the largely overlooked SIBC. It provides an understanding that will help practitioners select, use, and develop these efficient modeling tools for their own applications. Use of SIBC has often been viewed as an esoteric issue, and they have been applied in a very limited way, incorporated in computation as an ad hoc means of simplifying the treatment for specific problems. Apply a Surface Impedance "Toolbox" to Develop SIBCs for Any Application The book not only outlines the need for SIBC but also offers a simple, systematic method for constructing SIBC of any order based on a perturbation approach. The formulation of the SIBC within common numerical techniques-such as the boundary integral equations method, the finite element method, and the finite difference method-is discussed in detail and elucidated with specific examples. Since SIBC are often shunned because their implementation usually requires extensive modification of existing software, the authors have mitigated this problem by developing SIBCs, which can be incorporated within existing software without system modification. The authors also present: Conditions of applicability, and errors to be expected from SIBC inclusion Analysis of theoretical arguments and mathematical relationships Well-known numerical techniques and formulations of SIBC A practical set of guidelines for evaluating SIBC feasibility and maximum errors their use will produce A careful mix of theory and practical aspects, this is an excellent tool to help anyone acquire a solid grasp of SIBC and maximize their implementation potential.
Two topics in the forefront of superconductor research--superconductor-insulator transition in thin films and vortex tunneling in granular, bulk, and high temperature superconductors--have never before been given a unified and deductive treatment. This monograph and text provides a much-needed, comprehensive introduction to the theory of quantum fluctuations in inhomogenous superconducting materials. It be will be of great use to students and researchers in disciplines such as superconductivity, many-body systems, phase transitions, submicron physics, and surface science.
2D Materials for Photonic and Optoelectronic Applications introduces readers to two-dimensional materials and their properties (optical, electronic, spin and plasmonic), various methods of synthesis, and possible applications, with a strong focus on novel findings and technological challenges. The two-dimensional materials reviewed include hexagonal boron nitride, silicene, germanene, topological insulators, transition metal dichalcogenides, black phosphorous and other novel materials. This book will be ideal for students and researchers in materials science, photonics, electronics, nanotechnology and condensed matter physics and chemistry, providing background for both junior investigators and timely reviews for seasoned researchers.
This landmark work chronicles the origin and evolution of solid state physics, which grew to maturity between 1920 and 1960. The book examines the early roots of the field in industrial, scientific and artistic efforts and traces them through the 1950s, when many physicists around the world recognized themselves as members of a distinct subfield of physics research centered on solids. The book opens with an account of scientific and social developments that preceded the discovery of quantum mechanics, including the invention of new experimental means for studying solids and the establishment of the first industrial laboratories. The authors set the stage for the modern era by detailing the formulation of the quantum field theory of solids. The core of the book examines six major themes: the band theory of solids; the phenomenology of imperfect crystals; the puzzle of the plastic properties of solids, solved by the discovery of dislocations; magnetism; semiconductor physics; and collective phenomena, the context in which old puzzles such as superconductivity and superfluidity were finally solved. All readers interested in the history of science will find this absorbing volume an essential resource for understanding the emergence of contemporary physics.
Until now, novices had to painstakingly dig through the literature to discover how to use Monte Carlo techniques for solving electromagnetic problems. Written by one of the foremost researchers in the field, Monte Carlo Methods for Electromagnetics provides a solid understanding of these methods and their applications in electromagnetic computation. Including much of his own work, the author brings together essential information from several different publications. Using a simple, clear writing style, the author begins with a historical background and review of electromagnetic theory. After addressing probability and statistics, he introduces the finite difference method as well as the fixed and floating random walk Monte Carlo methods. The text then applies the Exodus method to Laplace s and Poisson s equations and presents Monte Carlo techniques for handing Neumann problems. It also deals with whole field computation using the Markov chain, applies Monte Carlo methods to time-varying diffusion problems, and explores wave scattering due to random rough surfaces. The final chapter covers multidimensional integration. Although numerical techniques have become the standard tools for solving practical, complex electromagnetic problems, there is no book currently available that focuses exclusively on Monte Carlo techniques for electromagnetics. Alleviating this problem, this book describes Monte Carlo methods as they are used in the field of electromagnetics.
A comprehensive coverage of the physical properties and real-world applications of magnetic nanostructures This book discusses how the important properties of materials such as the cohesive energy, and the electronic and vibrational structures are affected when materials have at least one length in the nanometer range. The author uses relatively simple models of the solid state to explain why these changes in the size and dimension in the nanometer regime occur. The text also reviews the physics of magnetism and experimental methods of measuring magnetic properties necessary to understanding how nanosizing affects magnetism. Various kinds of magnetic structures are presented by the author in order to explain how nanosizing influences their magnetic properties. The book also presents potential and actual applications of nanomaterials in the fields of medicine and computer data storage. Physics of Magnetic Nanostructures: * Covers the magnetism in carbon and born nitride nanostructures, bulk nanostructured magnetic materials, nanostructured magnetic semiconductors, and the fabrication of magnetic nanostructures * Discusses emerging applications of nanomaterials such as targeted delivery of drugs, enhancement of images in MRI, ferrofluids, and magnetic computer data storage * Includes end-of-chapter exercises and five appendices Physics of Magnetic Nanostructures is written for senior undergraduate and graduate students in physics and nanotechnology, material scientists, chemists, and physicists. |
![]() ![]() You may like...
Radioactivity - History, Science, Vital…
Michael F. L'Annunziata
Hardcover
R5,136
Discovery Miles 51 360
Paleomagnetism, Volume 73 - Continents…
Michael W. McElhinny, Phillip L. McFadden
Hardcover
R1,446
Discovery Miles 14 460
The Electron - Its Isolation and…
Robert Andrews 1868-1953 Millikan
Hardcover
R901
Discovery Miles 9 010
|