Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Electricity, magnetism & electromagnetism
This book provides a classical physics-based explanation of quantum physics, including a full description of photon creation and annihilation, and successful working models of both photons and electrons. Classical field theory, known to fully describe macroscopic scale events, is shown to fully describe atomic scale events, including photon emission and annihilation. As such the book provides a 'top-down' unification of electromagnetic and quantum theories.
As wireless technology becomes more sophisticated and accessible to more users, the interactions of electromagnetic fields with biological systems have captured the interest not only of the scientific community but also the general public. Unintended or deleterious biological effects of electromagnetic fields and radiation may indicate grounds for health and safety precautions in their use. Spanning static fields to terahertz waves, Electromagnetic Fields in Biological Systems explores the range of consequences these fields have on the human body. With contributions by an array of experts, topics discussed include: Essential interactions and field coupling phenomena, highlighting their importance in research on biological effects and in scientific, industrial, and medical applications Electric field interactions in cells, focusing on ultrashort, pulsed high-intensity fields The effect of exposure to naturally occurring and human-made static, low-frequency, and pulsed magnetic fields in biological systems Dosimetry or coupling of extremely low frequency (ELF) fields into biological systems and the historical developments and recent trends in numerical dosimetry Mobile communication devices and the dosimetry or coupling of radiofrequency (RF) radiation into the human body Exposure and dosimetry associated with magnetic resonance imaging (MRI) and spectroscopy Available data on the interaction of terahertz radiation with biological tissues, cells, organelles, and molecules There is great potential for communication, industrial, scientific, and medical use of electromagnetic fields and radiation. To help advance knowledge of the biological effects of such fields and to exploit their potential medical applications, this book highlights critical issues relating to their effects on living systems.
I am profoundly convinced that notwithstanding the great progress made in solid-state magnetic sensors, they are as yet in their cloudless infancy, whereas there is still so much lying ahead in a world, unlimited in time and space ... Good Heavens! They are a whole Universe into themselves. So expounds the author in his preface to this second volume in the exciting new series, Handbook of Sensors and Actuators. The publication presents a balanced view of the overall progress made in the field, whilst summing up scientific achievements as the groundwork for further development. Readers will find, for the first time, collected in one book, detailed information regarding the physical mechanisms of the origin of magnetosensitivity, the geometry and design of devices, operating modes, basic parameters and methods for their determination, the incorporation of transducers in circuits and smart solutions, many varied applications and other problems relevant to all the current Hall sensors, magnetodiodes, magnetotransistors, carrier-domain magnetometers, SQUID's (Superconducting Quantum Interference Devices) and similar transducers of magnetic energy. Particular attention is devoted to semiconductor magnetosensitive sensors and their microelectronic versions since development rates in this area signify a dominant research trend for the future. Undoubtedly this book will become a vital reference tool for the ever widening circle of researchers and engineers interested in solid-state magnetosensors. It also makes a fundamental contribution to the handbook series as a whole.
A fresh look at electricity and its powerful role in life on Earth When we think of electricity, we likely imagine the energy humming inside our home appliances or lighting up our electronic devices-or perhaps we envision the lightning-streaked clouds of a stormy sky. But electricity is more than an external source of power, heat, or illumination. Life at its essence is nothing if not electrical. The story of how we came to understand electricity's essential role in all life is rooted in our observations of its influences on the body-influences governed by the body's central nervous system. Spark explains the science of electricity from this fresh, biological perspective. Through vivid tales of scientists and individuals-from Benjamin Franklin to Elon Musk-Timothy Jorgensen shows how our views of electricity and the nervous system evolved in tandem, and how progress in one area enabled advancements in the other. He explains how these developments have allowed us to understand-and replicate-the ways electricity enables the body's essential functions of sight, hearing, touch, and movement itself. Throughout, Jorgensen examines our fascination with electricity and how it can help or harm us. He explores a broad range of topics and events, including the Nobel Prize-winning discoveries of the electron and neuron, the history of experimentation involving electricity's effects on the body, and recent breakthroughs in the use of electricity to treat disease. Filled with gripping adventures in scientific exploration, Spark offers an indispensable look at electricity, how it works, and how it animates our lives from within and without.
Electrodynamics is a basic area of physics, encompassing also classical and quantum physics, optics, relativity and field theory, and is of universal practical importance. The present text aims at a balance between basic theory and practical applications, and includes introductions to specific quantum mechanical effects. The detailed presentation allows the reader to follow every step. Each chapter is supplemented by both worked examples and unsolved exercises. This thoroughly revised second edition with new sections on networks and diffraction, and with international units stated wherever relevant, covers all the material normally required for a first degree in physics and beyond, and may serve as a step to advanced applications and research.
Electrodynamics is a basic area of physics, encompassing also classical and quantum physics, optics, relativity and field theory, and is of universal practical importance. The present text aims at a balance between basic theory and practical applications, and includes introductions to specific quantum mechanical effects. The detailed presentation allows the reader to follow every step. Each chapter is supplemented by both worked examples and unsolved exercises. This thoroughly revised second edition with new sections on networks and diffraction, and with international units stated wherever relevant, covers all the material normally required for a first degree in physics and beyond, and may serve as a step to advanced applications and research.
The drive toward smaller and smaller electronic componentry has huge implications for the materials currently being used. As quantum mechanical effects begin to dominate, conventional materials will be unable to function at scales much smaller than those in current use. For this reason, new materials with higher electrical permittivity will be required, making this is a subject of intensive research activity within the microelectronics community. High k Gate Dielectrics reviews the state-of-the-art in high permittivity gate dielectric research. Consisting of contributions from leading researchers from Europe and the USA, the book first describes the various deposition techniques used for construction of layers at these dimensions. It then considers characterization techniques of the physical, chemical, structural, and electronic properties of these materials. The book also reviews the theoretical work done in the field and concludes with technological applications.
Named a Top Five Book of 2011 by Physics Today, USA.'... the editors deserve praise for the selection of topics and for enlisting a distinguished set of authors. BCS: 50 Years is a successful attempt to capture the history of the development of superconductivity theory and its continuing impact. Any person curious about superconductivity will find something in this book to enjoy.'Physics TodayThe BCS theory of superconductivity developed in 1957 by Bardeen, Cooper and Schrieffer has been remarkably successful in explaining the properties of superconductors. In addition, concepts from BCS have been incorporated into diverse fields of physics, from nuclear physics and dense quark matter to the current standard model. Practical applications include SQUIDs, magnetic resonance imaging, superconducting electronics and the transmission of electricity. This invaluable book is a compilation of both a historical account and a discussion of the current state of theory and experiment.With contributions from many prominent scientists, it aims to introduce students and researchers to the origins, the impact and the current state of the BCS theory.
Named a Top Five Book of 2011 by Physics Today, USA.'... the editors deserve praise for the selection of topics and for enlisting a distinguished set of authors. BCS: 50 Years is a successful attempt to capture the history of the development of superconductivity theory and its continuing impact. Any person curious about superconductivity will find something in this book to enjoy.'Physics TodayThe BCS theory of superconductivity developed in 1957 by Bardeen, Cooper and Schrieffer has been remarkably successful in explaining the properties of superconductors. In addition, concepts from BCS have been incorporated into diverse fields of physics, from nuclear physics and dense quark matter to the current standard model. Practical applications include SQUIDs, magnetic resonance imaging, superconducting electronics and the transmission of electricity. This invaluable book is a compilation of both a historical account and a discussion of the current state of theory and experiment.With contributions from many prominent scientists, it aims to introduce students and researchers to the origins, the impact and the current state of the BCS theory.
Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-wideband Short-Pulse Electromagnetics 9 presents selected papers of deep technical content and high scientific quality from the UWB-SP9 Conference, which was held from July 21-25, 2008, in Lausanne, Switzerland. The wide-ranging coverage includes contributions on electromagnetic theory, time-domain computational techniques, modeling techniques, antennas, pulsed-power, UWB interactions, radar systems, UWB communications, broadband systems and components. This book serves as a state-of-the-art reference for scientists and engineers working in these applications areas.
Most stars appear to show some degree of magnetic activity. Varying magnetic fields show up in the familiar sun-spot cycle and in similar activity in other cool stars. Many hot stars carry steady magnetic fields stronger than the average solar field and are well described as oblique rotators. A similar model is applicable to the rapidly rotating, enormously dense neutron stars with their far stronger fields, observed as radio and X-ray pulsars. Galactic magnetic fields may play a crucial role in star formation, and in the spectacular behaviour in galactic nuclei. Cosmical magnetism in general is a rapidly developing field, and this book has grown out of the lifelong work of an outstanding researcher in the area. An authoritative account with broad astronomical scope, its thorough, careful and well-argued approach makes it a fine addition to the professional literature. Most of the important topics are treated in mathematical depth with references to other relevant literature. Some of the studies, especially those on accretion discs, dynamos, and winds, are applicable to galaxies and galactic nuclei. This book is sure to become an invaluable professional reference and guide to current thinking in the field. It will be of particular interest to graduate students, for whom it shows how the area has developed and indicates the many challenging research problems, some of which may soon yield their secrets to the emerging supercomputers.
This volume highlights the recent advances and state of art in the experimental and theoretical studies of organometallic magnets. A plethora of organic ligands such as Mannich-base derivatives, redox-active chromophores, cyanides, Schiff base among others are used to coordinate to 3d transition metals, 4f lanthanides and 5f actinides to design the molecular magnets. Deep analysis of the coordination sphere symmetry, electronic distribution, luminescence are investigated to perform magneto-structural correlation leading to a better understanding of the magnetic properties. Furthermore, the rationalization of the magnetic behavior can be reached using ab initio calculations. The multiple applications that these molecular magnets offer could revolutionize the high-density data storage, spintronics and quantum computing technologies. This volume provides a discussion of these topics from leading international experts and will be a useful reference for researchers working in this field.
Magnetometry for Archaeologists covers the most widely used method for archaeological surveying. Authors Arnold Aspinall, Chris Gaffney, and Armin Schmidt recount the history of magnetometers from their inception through today's state-of-the-art detectors, explain the physics behind the different types of sensors, and describe the most fruitful ways in which the technology can be employed. They also consider the theoretical and practical uses of magnetometry from for many archaeological periods and regions. The reader learns exactly what magnetometry measures, and how knowledge gained from it influences the ways in which surveys are undertaken. The authors also discuss the potential for and the problems associated with the use, display, and interpretation of buried remains. View the book's Acknowledgments.
The third volume in Leonard Susskind's one-of-a-kind physics series cracks open Einstein's special relativity and field theory In the first two books in his wildly popular The Theoretical Minimum series, world-class physicist Leonard Susskind provided a brilliant first course in classical and quantum mechanics, offering readers not an oversimplified introduction, but the real thing - everything you need to start doing physics, and nothing more. Now, thankfully, Susskind and his former student Art Friedman are back, this time to introduce readers to special relativity and classical field theory. At last, waves, forces and particles will be demystified. Using their typical brand of relatively simple maths, enlightening sketches and the same fictional counterparts, Art and Lenny, Special Relativity and Classical Field Theory takes us on an enlightening journey through a world now governed by the laws of special relativity. Starting in their new watering hole, Hermann's Hideaway, with a lesson on relativity, Art and Lenny walk us through the complexities of Einstein's famous theory. Combining rigor with humour, Susskind and Friedman guarantee that Special Relativity and Classical Field Theory will become part of the reader's physics toolbox.
As technology matures, communication system operation regions shift from mic- wave and millimeter ranges to sub-millimeter ranges. However, device perf- mance at very high frequencies suffers drastically from the material de?ciencies. As a result, engineers and scientists are relentlessly in search for the new types of materials, and composites which will meet the device performance requirements and not present any de?ciencies due to material electrical and magnetic properties. Anisotropic and gyrotropic materials are the class of the materials which are very important in the development high performance microwave devices and new types composite layered structures. As a result, it is a need to understand the wave propagation and radiation characteristics of these materials to be able to realize them in practice. This book is intended to provide engineers and scientists the required skill set to design high frequency devices using anisotropic, and gyrotropic materials by providing them the theoretical background which is blended with the real world engineering application examples. It is the author's hope that this book will help to ?ll the gap in the area of applied electromagnetics for the design of microwave and millimeter wave devices using new types of materials. Each chapter in the book is designed to give the theory ?rst on the subject and solidify it with application examples given in the last chapter. The application examples for the radiation problems are given at the end of Chap. 5 and Chap. 6 for anisotropic and gyrotropic materials, respectively, after the theory section.
In the past several decades, the research on spin transport and magnetism has led to remarkable scientific and technological breakthroughs, including Albert Fert and Peter Grunberg's Nobel Prize-winning discovery of giant magnetoresistance (GMR) in magnetic metallic multilayers. Handbook of Spin Transport and Magnetism provides a comprehensive, balanced account of the state of the art in the field known as spin electronics or spintronics. It reveals how key phenomena first discovered in one class of materials, such as spin injection in metals, have been revisited decades later in other materials systems, including silicon, organic semiconductors, carbon nanotubes, graphene, and carefully engineered nanostructures. The first section of the book offers a historical and personal perspective of the field written by Nobel Prize laureate Albert Fert. The second section addresses physical phenomena, such as GMR, in hybrid structures of ferromagnetic and normal metals. The third section discusses recent developments in spin-dependent tunneling, including magnetic tunnel junctions with ferroelectric barriers. In the fourth section, the contributors look at how to control spin and magnetism in semiconductors. In the fifth section, they examine phenomena typically found in nanostructures made from metals, superconductors, molecular magnets, carbon nanotubes, quantum dots, and graphene. The final section covers novel spin-based applications, including advanced magnetic sensors, nonvolatile magnetoresistive random access memory, and semiconductor spin-lasers. The techniques and materials of spintronics have rapidly evolved in recent years, leading to vast improvements in hard drive storage and magnetic sensing. With extensive cross-references between chapters, this seminal handbook provides a complete guide to spin transport and magnetism across various classes of materials and structures.
This book is the first of its kind to devote itself at this level to the key role played by light and electromagnetic radiation in the universe. Readers are introduced to philosophical hypotheses such as the economy, symmetry, and universality of natural laws, and are then guided to practical consequences such as the rules of geometrical optics and even Einstein's well-known but mysterious relationship, E = mc2. Most chapters feature a pen picture of the life and character of a relevant scientific figure. These "Historical Interludes" include, among others, Galileo's conflicts with the Inquisition, Fourier's taunting of the guillotine, Neils Bohr and World War II, and the unique character of Richard Feynman.Going one step beyond the popular level, this easy-to-read book gives an overall view to undergraduate and postgraduate physics students that is often missing when trying to assimilate the technical details of their courses. Through its original treatment of topics and enjoyable style of writing, it will also stimulate keen interest in general readers who are interested in science and have a basic mathematics background as well as teachers looking for basic and accurate background information.
This fascinating series brings some tricky science topics right down to the basics, setting curious kids up for a lifetime of learning about the forces at work all around us.
A fresh look at electricity and its powerful role in life on Earth When we think of electricity, we likely imagine the energy humming inside our home appliances or lighting up our electronic devices-or perhaps we envision the lightning-streaked clouds of a stormy sky. But electricity is more than an external source of power, heat, or illumination. Life at its essence is nothing if not electrical. The story of how we came to understand electricity's essential role in all life is rooted in our observations of its influences on the body-influences governed by the body's central nervous system. Spark explains the science of electricity from this fresh, biological perspective. Through vivid tales of scientists and individuals-from Benjamin Franklin to Elon Musk-Timothy Jorgensen shows how our views of electricity and the nervous system evolved in tandem, and how progress in one area enabled advancements in the other. He explains how these developments have allowed us to understand-and replicate-the ways electricity enables the body's essential functions of sight, hearing, touch, and movement itself. Throughout, Jorgensen examines our fascination with electricity and how it can help or harm us. He explores a broad range of topics and events, including the Nobel Prize-winning discoveries of the electron and neuron, the history of experimentation involving electricity's effects on the body, and recent breakthroughs in the use of electricity to treat disease. Filled with gripping adventures in scientific exploration, Spark offers an indispensable look at electricity, how it works, and how it animates our lives from within and without.
Topological Foundations of Electromagnetism seeks a fundamental understanding of the dynamics of electromagnetism; and marshals the evidence that in certain precisely defined topological conditions, electromagnetic theory (Maxwell's theory) must be extended or generalized in order to provide an explanation and understanding of, until now, unusual electromagnetic phenomena. Key to this generalization is an understanding of the circumstances under which the so-called A potential fields have physical effects. Basic to the approach taken is that the topological composition of electromagnetic fields is the fundamental conditioner of the dynamics of these fields. The treatment of electromagnetism from, first, a topological perspective, continuing through group theory and gauge theory, to a differential calculus description is a major thread of the book. Suggestions for potential new technologies based on this new understanding and approach to conditional electromagnetism are also given.
The quantum Hall effect (QHE) is one of the most fascinating and beautiful phenomena in all branches of physics. Tremendous theoretical and experimental developments are still being made in this sphere. In the original edition of this book, composite bosons, composite fermions and fractional charged excitations (anyons) were among the distinguished ideas presented. This new edition includes many novel ideas according to recent progress. Fantastic phenomena associated with the interlayer phase coherence and SU(4) quantum Hall ferromagnets in the bilayer system are extensively reviewed. The microscopic theory of the QHE is formulated based on noncommutative geometry, the underlying mathematical structure. Quasiparticles are described as noncommutative solitons. The coverage also includes the recent development of the unconventional QHE in graphene (a single atomic layer graphite), where the electron dynamics can be treated as relativistic Dirac fermions and even the supersymmetric quantum mechanics plays a key role. An instructive and comprehensive overview of the QHE, the book is also suitable as an introduction to quantum field theory with vivid applications. Only a knowledge of quantum mechanics is assumed.
This advanced level textbook is devoted to the description of systems which show ordered magnetic phases. A wide selection of topics is covered, including a detailed treatment of the mean-field approximation as the main paradigm for the phenomenological description of phase transitions. The book discusses the properties of low-dimensional systems and uses Green's functions extensively after a useful mathematical introduction. A thorough presentation of the RKKY and related models of indirect exchange is also featured, and a chapter on surface magnetism, rarely found in other textbooks, adds to the uniqueness of this book.For the second edition, three new chapters have been added, namely on magnetic anisotropy, on coherent magnon states and on local moments. Additionally, the chapter on itinerant magnetism has been enlarged by including a section on paramagnons.
Featuring chapters written by leading experts in magnetometry, this book provides comprehensive coverage of the principles, technology and diverse applications of optical magnetometry, from testing fundamental laws of nature to detecting biomagnetic fields and medical diagnostics. Readers will find a wealth of technical information, from antirelaxation-coating techniques, microfabrication and magnetic shielding to geomagnetic-field measurements, space magnetometry, detection of biomagnetic fields, detection of NMR and MRI signals and rotation sensing. The book includes an original survey of the history of optical magnetometry and a chapter on the commercial use of these technologies. The book is supported by extensive online material, containing historical overviews, derivations, sideline discussion, additional plots and tables, available at www.cambridge.org/9781107010352. As well as introducing graduate students to this field, the book is also a useful reference for researchers in atomic physics.
This book describes in mathematical terms the extraction of useful information from ESR spectra as applied to paramagnetic organic, inorganic and organometalic molecules. It lays a firm groundwork for understanding more sophisticated experiments, which the availability of newer commercial instruments has made possible. It takes the reader step by step through obtaining and interpretating ESR spectra of paramagnetic molecules. The mathematical basis of each observed phenomena are detailed and examples given. In particular there is a detailed discussion of 2nd order pertubation theory treatment of the Spin Hamiltonian for non-coincident G and A axes. |
You may like...
Wind Turbines - Advances and Challenges…
Karam Maalawi
Hardcover
Radium and Radio-active Substances…
Charles 1870-1922 Baskerville
Hardcover
R793
Discovery Miles 7 930
|