![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Electricity, magnetism & electromagnetism
Gaseous Dielectrics IX covers recent advances and developments in a wide range of basic, applied, and industrial areas of gaseous dielectrics.
This textbook introduces advanced classical electrodynamics using modern mathematical techniques, with an emphasis on physical concepts. Connections to field theory and general relativity are highlighted while the book still serves as the basis for a one- or two-semester course on electrodynamics within the graduate curriculum.
This book describes and provides design guidelines for antennas that achieve compactness by using the slot radiator as the fundamental building block within a periodic array, rather than a phased array. It provides the basic electromagnetic tools required to design and analyse these novel antennas, with sample calculations where relevant. The book presents a focused introduction and valuable insights into the relevant antenna technology, together with an overview of the main directions in the evolving technology of compact planar arrays. While the book discusses the historical evolution of compact array antennas, its main focus is on summarising the extensive body of literature on compact antennas. With regard to the now ubiquitous slot radiator, it seeks to demonstrate how, despite significant antenna size reductions that at times even seem to defy the laws of physics, desirable radiation pattern properties can be preserved. This is supported by an examination of recent advances in frequency selective surfaces and in metamaterials, which can, if handled correctly, be used to facilitate physics-defying designs. The book offers a valuable source of information for communication systems and antenna design engineers, especially thanks to its overview of trends in compact planar arrays, yet will also be of interest to students and researchers, as it provides a focused introduction and insights into this highly relevant antenna technology.
This textbook is aimed at second-year graduate students in Physics, Electrical Engineer ing, or Materials Science. It presents a rigorous introduction to electronic transport in solids, especially at the nanometer scale.Understanding electronic transport in solids requires some basic knowledge of Ham iltonian Classical Mechanics, Quantum Mechanics, Condensed Matter Theory, and Statistical Mechanics. Hence, this book discusses those sub-topics which are required to deal with electronic transport in a single, self-contained course. This will be useful for students who intend to work in academia or the nano/ micro-electronics industry.Further topics covered include: the theory of energy bands in crystals, of second quan tization and elementary excitations in solids, of the dielectric properties of semicon ductors with an emphasis on dielectric screening and coupled interfacial modes, of electron scattering with phonons, plasmons, electrons and photons, of the derivation of transport equations in semiconductors and semiconductor nanostructures somewhat at the quantum level, but mainly at the semi-classical level. The text presents examples relevant to current research, thus not only about Si, but also about III-V compound semiconductors, nanowires, graphene and graphene nanoribbons. In particular, the text gives major emphasis to plane-wave methods applied to the electronic structure of solids, both DFT and empirical pseudopotentials, always paying attention to their effects on electronic transport and its numerical treatment. The core of the text is electronic transport, with ample discussions of the transport equations derived both in the quantum picture (the Liouville-von Neumann equation) and semi-classically (the Boltzmann transport equation, BTE). An advanced chapter, Chapter 18, is strictly related to the 'tricky' transition from the time-reversible Liouville-von Neumann equation to the time-irreversible Green's functions, to the density-matrix formalism and, classically, to the Boltzmann transport equation. Finally, several methods for solving the BTE are also reviewed, including the method of moments, iterative methods, direct matrix inversion, Cellular Automata and Monte Carlo. Four appendices complete the text.
Practical NMR Spectroscopy Laboratory Guide is designed to provide non-expert NMR users, typically graduate students in chemistry, an introduction to various facets of practical solution-state NMR spectroscopy. Each chapter offers a series of hands-on exercises, introducing various NMR concepts and experiments and guiding the reader in running these experiments using an NMR spectrometer. The book is written for use with a Bruker NMR spectrometer running TopSpin software versions 1 or 2. This practical resource functions both as a text for instructors of a practical NMR course and also as a reference for spectrometer administrators or NMR facility directors when doing user training. This guide serves as serve as excellent, practical resource on its own or as a companion book to Timothy Claridge's High-Resolution NMR Techniques in Organic Chemistry, 2nd Edition (Elsevier, 2009).
In the past 30 years, magnetic research has been dominated by the question of how surfaces and interfaces influence the magnetic and transport properties of nanostructures, thin films and multilayers. The research has been particularly important in the magnetic recording industry where the giant magnetoresistance effect led to a new generation of storage devices including hand-held memories such as those found in the ipod. More recently, transfer of spin angular momentum across interfaces has opened a new field for high frequency applications. This book gives a comprehensive view of research at the forefront of these fields. The frontier is expanding through dynamic exchange between theory and experiment. Contributions have been chosen to reflect this, giving the reader a unified overview of the topic.
For several years, core level spectroscopies and other, c\osely related, electron spectroscopies have provided very useful information about the atomic composition, the geometric structure, and the electronic structure of condensed matter. Recently, these spectroscopies have also been used for the study of magnetic properties; such studies have a great potential to extend our knowledge and understanding of magnetic systems. This volume collects the lectures presented at the NATO Advanced Study Institute on "Core Level Spectroscopies for Magnetic Phenomena: Theory and Experiment" held at the Ettore Majorana Centre, Erice, Sicily, on 15 to 26 May 1994. The topics considered at the ASI covered a wide range of subjects involving the use of core-level and related spectroscopies to study magnetic phenomena. There are a large and growing number of applications of these spectroscopies to the study of magnetic materials; an important objective of the ASI was to stimulate further growth. The topics covered at the ASI can be placed into three general groups: 1) fundamental principles of core level spectroscopies; 2) basic aspects of magnetic phenomena; and, 3) the combination of the two previous topics embodied in applications of the spectroscopies to magnetism. In all three groups, theoretical interpretations as weH as experimental measurements were presented, often both of these aspects were covered in a single lecture or series oflectures. The theoretical treatments ofthe spectroscopies as weH as of the magnetic phenomena help to establish a framework for understanding many of the experimental measurements on magnetic materials.
Our understanding of the physical world was revolutionized in the twentieth century - the era of "modern physics". Two books by the second author entitled Introduction to Modern Physics: Theoretical Foundations and Advanced Modern Physics: Theoretical Foundations, aimed at the very best students, present the foundations and frontiers of today's physics. Many problems are included in these texts. A previous book by the current authors provides solutions to the over 175 problems in the first volume.A third volume Topics in Modern Physics: Theoretical Foundations has recently appeared, which covers several subjects omitted in the essentially linear progression in the previous two. This book has three parts: part 1 is on quantum mechanics, part 2 is on applications of quantum mechanics, and part 3 covers some selected topics in relativistic quantum field theory. Parts 1 and 2 follow naturally from the initial volume. The present book provides solutions to the over 135 problems in this third volume.The three volumes in this series, together with the solutions manuals, provide a clear, logical, self-contained, and comprehensive base from which students can learn modern physics. When finished, readers should have an elementary working knowledge in the principal areas of theoretical physics of the twentieth century.
Low-dimensional magnetism physics involves the search for new magnetic compounds and improving their characteristics to meet the needs of innovative technologies. A comprehensive overview of key materials, their formulation data and characteristics are detailed by the author. Key selling features: Explores dominant mechanisms of magnetic interaction to determine the parameters of exchange interactions in new magnetic materials. Describes how magnetism and superconductivity not only compete, but also "help" each other. Details characteristics of key materials in the magnetic subsystem. Results of several internationally renowned research groups are included and cited. Suitable for a wide range of readers in physics, materials science, and chemistry interested in the problems of the structure of matter.
The purpose of this monograph is both to introduce and review developed tomograhic methods for discovering 2D and 3D structures of the ionosphere and to discuss the experimental implementation of these methods. The theoretical part deals with the solution of the inverse problem of diffraction tomography for a wide range of properties of ionospheric media. Examples are given to illustrate the experimental reconstruction of electron-density distributions in ionospheric sections. In addition to addressing the specialist researcher, the detailed derivations and explanations make this book an excellent starting point for nonspecialists and graduate students who wish to enter this exciting new field to which the authors have made pioneering contributions.
This volume focuses on fundamental aspects of nano-electro-optics. Starting with fiber probes and related devices for generating and detecting the optical near-field with high efficiency and resolution, the next chapter addresses the modulation of an electron beam by optical near-fields. Further topics include: fluorescence spectroscopy, in which sample molecules are excited by the evanescent surface plasmon field close to metallic surfaces; spatially resolved near-field photoluminescence spectroscopy of semiconductor quantum dots, which will become an essential issue in future electro-optical devices and systems; and, finally, the quantum theory of the optical near-field. This latter theory accounts for all the essential features of the interaction between optical near-fields and nanomaterials, atoms and molecules. Together these overviews will be a valuable resource for engineers and scientists working in the field of nano-electro-optics.
New Trends in Superconductivity contains up-to-date papers covering the most exciting current topics in superconductivity research. The main areas include cuprate superconductivity, covering mechanisms, pairing symmetry, pseudogap, stripes, growth and synthesis; novel superconductors, including MgB2, Sr2RuO4, borocarbides and C60-based systems; and mesoscopic superconductors and vortex matter, including vortex structure, type II superconductors, macroscopic quantum coherence and qubit devices and multilayer systems. A useful, up-to-date reference of current research in all of these rapidly developing fields of superconductivity.
These lecture notes cover classical electrodynamics at the level of advanced undergraduates or postgraduates. There is a strong emphasis on the general features of the electromagnetic field and, in particular, on the properties of electromagnetic radiation. It offers a comprehensive and detailed, as well as self-contained, account of material that can be covered in a one-semester course for students with a solid undergraduate knowledge of basic electricity and magnetism.
These lecture notes cover classical electrodynamics at the level of advanced undergraduates or postgraduates. There is a strong emphasis on the general features of the electromagnetic field and, in particular, on the properties of electromagnetic radiation. It offers a comprehensive and detailed, as well as self-contained, account of material that can be covered in a one-semester course for students with a solid undergraduate knowledge of basic electricity and magnetism.
The book is intended for graduate students and researchers who wish to master the main properties of magnetic materials in the bulk state and at the nanometric scale such as for thin films and multilayers. This textbook provides the theories and methods of simulation to study and to understand these properties in an explicit manner.In the first part of the book, the quantum theory of magnetism is presented while the second part of the book is devoted to the application of the theory of magnetism to surface physics. Numerous examples covering typical cases in ferromagnets, antiferromagnets, ferrimagnets, helimagnets, and frustrated spin systems are all illustrated. Fundamental surface effects are shown and discussed. Lastly, the spin transport is described - in which the basic formulation of the Boltzmann's equation is recalled - and the recent methods of Monte Carlo simulation to deal with the spin resistivity are explained.This book contains a large number of detailed solutions for the problems given in each chapter to help readers discover new related phenomena and applications, as well as an appendix on elements of statistical physics included at the end to make the book self-contained.
This book gathers selected papers from the Chinese Materials Conference 2018 (CMC2018) held in Xiamen City, Fujian, China, on July 12-16, 2018. The Chinese Materials Conference (CMC) is the Chinese Materials Research Society's most important conference series and has been held annually since the early 1990s. The 2018 edition consisted of 32 domestic symposia, 2 international symposia and 1 international materials forum. This proceedings book covers the fields of powder metallurgy, advanced aluminum alloys, advanced magnesium alloys, superalloys, metal matrix composites, space materials science and technology, as well as nanoporous metal materials, and presents recent original research findings from more than 300 research groups at various universities and research institutes.
This monograph examines James Clerk Maxwell's contributions to electromagnetism to gain insight into the practice of science by focusing on scientific methodology as applied by scientists. First and foremost, this study is concerned with practices that are reflected in scientific texts and the ways scientists frame their research. The book is therefore about means and not ends.
In the last several decades, the quantum Hall effect has provided a remarkable platform for manipulating one-dimensional electronic modes and investigating fundamental physical phenomena. However, certain limitations make it difficult for various kinds of interesting modes structures to be formed using this platform. One example is the so called helical mode structure, in which two one-dimensional, counter propagating modes have opposite spins and thus spin and momentum are locked. Such helical modes have lately attracted significant interest, since, when coupled to a conventional superconductor, they are expected to manifest topological superconductivity and host Majorana zero modes. Even more interesting are fractional helical modes, which open the way for realizing generalized parafermionic zero modes. Possessing non-abelian exchange statistics, these quasiparticles may serve as building blocks in topological quantum computing. Here we present a new platform for manipulating integer and fractional quantum Hall edge modes, which allows the formation of robust one-dimensional helical as well as fractional helical modes. The platform is based on a carefully designed double-quantum-well structure in a GaAs based system hosting two electronic sub-bands in the quantum Hall effect regime. By electrostatic gating of different areas of the structure, counter-propagating integer, as well as fractional, edge modes with opposite spins are formed and their spin protection is verified. Beyond the formation of helical modes, the new platform can serve as a rich playground for new research. Some new possibilities include the artificial induction of compounded fractional edge modes and the construction of new edge mode-based interferometers.
The aim of this NATO ASI has been to present an up-to-date overview of current areas of interest in amorphous materials. In order to limit the material to a manageable amount, the meeting was concerned exclusively with insulating and semiconducting materials. The lectures and seminars fill the gap between graduate courses and research seminars. The lecturers and seminar speakers were chosen as experts in their respective areas and the lectures and seminars that were given are presented in this volume. During the first week of the meeting. an emphasis was placed on introductory lectures, mainly associated with questions relating to the glass-formation and the structure of glasses. The second week focused more on research seminars. Each day of the meeting. about four posters were presented during the coffee breaks, and these formed an important focus for discussions. The posters are not reproduced in this volume as the editors wanted to have only larger contributions to make this volume more coherent. This volume is organized into four sections, starting with general considerations of the glass forming ability and techniques for the preparation of different kinds of glasses.
The book deals with perovskite-type ferroelectric solid solutions for modern materials science and applications, solving problems of complicated heterophase/domain structures near the morphotropic phase boundary and applications to various systems with morphotropic phases. In this book domain state-interface diagrams are presented for the interpretation of heterophase states in perovskite-type ferroelectric solid solutions. It allows to describe the stress relief in the presence of polydomain phases, the behavior of unit-cell parameters of coexisting phases and the effect of external electric fields. The novelty of the book consists in (i) the first systematization of data about heterophase states and their evolution in ferroelectric solid solutions (ii) the general interpretation of heterophase and domain structures at changing temperature, composition or electric field (iii) the complete analysis of interconnection domain structures, unit-cell parameters changes, heterophase structures and stress relief.
The aim of this work is to bridge the gap between the well-known Newtonian mechanics and the studies on chaos, ordinarily reserved to experts. Several topics are treated: Lagrangian, Hamiltonian and Jacobi formalisms, studies of integrable and quasi-integrable systems. The chapter devoted to chaos also enables a simple presentation of the KAM theorem. All the important notions are recalled in summaries of the lectures. They are illustrated by many original problems, stemming from real-life situations, the solutions of which are worked out in great detail for the benefit of the reader. This book will be of interest to undergraduate students as well as others whose work involves mechanics, physics and engineering in general.
The contributions to this volume focus on selected chemical aspects of rare-earth materials. The topics covered range from a basic treatment of crystalline electric-field effects and chemical interactions in organic solvents, to separation processes, electrochemical beaviors which impact corrosion, oxidation resistance, chemical energy storage and sensor technology, and to analytical procedures. Underlying the most subtle chemical and optical properties of these elements and their compounds in the condensed state are the crystal field effects. This phenomenon in non-metallic compounds is discussed in chapter six. The volume opens with a review of important new solvent extraction procedures as well as emerging alternative separation processes such as photochemical separation, precipitation stripping and supercritical extraction. Scientific and industrial procedures are illustrated. In a further chapter eight major analytical techniques of obtaining accurate trace analysis are examined, tabulated and assessed. The most effective procedures of each are also reviewed. Chapter two considers a wide variety of methods using rare-earth solutions and slats to modify advantageously the costly deterioration of metals and alloys. This topic is expanded in the following chapter, paying particular attention to protection against high-temperature oxidation, sulfidization and hot-salt corrosion. The following two chapters are concerned with the versatility of the rare earths in addressing current technical problems such the use of rare-earth intermetallics, principally LaNi3-based materials, to provide the skyrocketing need for environmetally friendly, usually portable, battery power. The final chapter is a review of the solvation, interaction and coordination of rare-earth salts in a variety of organic solvents including dimethylacetamide, dimethylsulfoxide, various alcohols, acetonitrile and propylenecarbonate under strict anhydrous conditions. A contrast of these interactions with those in which water is present with organic solvents is also made.
|
![]() ![]() You may like...
Handbook of Research on E-learning…
Rita de Cassia Veiga Marriott, Patricia Lupion Torres
Hardcover
R7,304
Discovery Miles 73 040
Kant's Inaugural Dissertation of 1770
Immanuel 1724-1804 Kant, William Julius 1853-1908 Eckoff
Hardcover
R821
Discovery Miles 8 210
Land, Memory, Reconstruction and Justice…
Anna Bohlin, Ruth Hall, …
Paperback
|