Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Electricity, magnetism & electromagnetism
The part Fundamentals is novel, first in that it stresses the use of electric currents in Magneto-Fluid-Dynamics. As a rule, authors discuss magnetic field lines without ever referring to the required electric currents. Second, the book stresses the importance of electric space charges inside conductors that move in magnetic fields. It is the custom to disregard both the required electric currents and the field of the space charges; this leads to many absurd results. The Case Studies concern solar phenomena and the Earth's magnetic field, stressing electric currents and electric space charges. Each case study is based on a published, or soon to be published, paper.
"Blurb & Contents" This current and comprehensive treatment of the physics of small- amplitude waves in hot magnetized plasmas provides a thorough update of the author's classic Theory of Plasma Waves. New topics include quasi-linear theory, inhomogeneous plasmas, collisions, absolute and convective instability, and mode conversion. Valuable for graduates and advanced undergraduates and an indispensable reference work for researchers in plasmas, controlled fusion, and space science.
Flux quantization experiments indicate that the carriers, Cooper pairs (pairons), in the supercurrent have charge magnitude 2e, and that they move independently. Josephson interference in a Superconducting Quantum Int- ference Device (SQUID) shows that the centers of masses (CM) of pairons move as bosons with a linear dispersion relation. Based on this evidence we develop a theory of superconductivity in conventional and mate- als from a unified point of view. Following Bardeen, Cooper and Schrieffer (BCS) we regard the phonon exchange attraction as the cause of superc- ductivity. For cuprate superconductors, however, we take account of both optical- and acoustic-phonon exchange. BCS started with a Hamiltonian containing "electron" and "hole" kinetic energies and a pairing interaction with the phonon variables eliminated. These "electrons" and "holes" were introduced formally in terms of a free-electron model, which we consider unsatisfactory. We define "electrons" and "holes" in terms of the cur- tures of the Fermi surface. "Electrons" (1) and "holes" (2) are different and so they are assigned with different effective masses: Blatt, Schafroth and Butler proposed to explain superconductivity in terms of a Bose-Einstein Condensation (BEC) of electron pairs, each having mass M and a size. The system of free massive bosons, having a quadratic dispersion relation: and moving in three dimensions (3D) undergoes a BEC transition at where is the pair density.
Turbulence and magnetic fields are ubiquitous in the Universe. Their importance to astronomy cannot be overestimated. The theoretical advancements in magnetohydrodynamic (MHD) turbulence achieved during the past two decades have significantly influenced many fields of astronomy. This book provides predictive theories of the magnetic field generation by turbulence and the dissipation of MHD turbulence. These fundamental non-linear problems were believed to be tractable only numerically. This book provides complete analytical descriptions in quantitative agreement with existing numerics, as well as theoretical predictions in physical regimes still unreachable by simulations, and explanations of various related observations. It also discusses and promotes the astrophysical applications of MHD turbulence theories, including (i) the particle acceleration and radiation in high-energy phenomena, e.g., Gamma-Ray Bursts, supernova remnants, cosmic rays; (ii) interstellar density fluctuations and the effect on observations, e.g., Faraday rotation, scattering measurements of Galactic and extragalactic radio sources; (iii) density and magnetic field structure in molecular clouds toward star formation. In closing, this book demonstrates the key role of MHD turbulence in connecting diverse astrophysical processes and unraveling long-standing astrophysical problems, as foreseen by Chandrasekhar, a founder of modern astrophysics.
This book features selected works presented in the 28th National Conference on Condensed Matter Physics, "Condensed Matter Days (CMDAYS) 2020", which was held from December 11th to 13th December 2020. The conference brought together seasoned experts and upcoming researchers from all over India to share their research and ideas in the field of condensed matter physics. This book is a glimpse into the works and ideas that were discussed and presented at the conference. It includes works on diverse fields from nanomaterials to fuel cells, photocatalysis to ferromagnetism, application studies to fundamental studies.
Volume 9 of the "Handbook of Magnetic Materials" has a dual purpose, as do the preceding volumes in the series. As a textbook it is intended to be of assistance to those who wish to be introduced to a given topic in the field of magnetism without the need to read the vast amount of literature published. As a work of reference it is intended for scientists active in magnetism research. To this dual purpose, Volume 9 of the Handbook is composed of topical review articles written by leading authorities. In each of these articles an extensive description is given in graphical as well as in tabular form, much emphasis being placed on the discussion of the experimental material in the framework of physics, chemistry and material science. Chapter one presents a general account of the magnetism of heavy-fermion systems. Two novel experimental techniques are described in chapters two and five. Chapter two deals with muon spin rotation and chapter five gives an account of the possibilities offered by photon beam spectroscopy. In both chapters it is shown how these sophisticated experimental methods can be used to obtain experimental information not easily obtainable by conventional experimental methods. Chapter three deals with interstitially modified intermetallic compounds of rare earth and 3d elements. Finally chapter four is concerned with thermodynamic approach to phase transitions and shows how the understanding and description of these magnetic phase transitions can be considerably enriched.
This book provides a comprehensive overview of magnetic levitation (Maglev) technologies, from fundamental principles through to the state-of-the-art, and describes applications both realised and under development. It includes a history of Maglev science and technology showing the various milestones in its advancement. The core concepts, operating principles and main challenges of Maglev applications attempted across various fields are introduced and discussed. The principle difficulties encountered when applying Maglev technology to different systems, namely air gap control and stabilization, are addressed in detail. The book describes how major advancements in linear motor and magnet technologies have enabled the development of the linear-motor-powered Maglev train, which has a high speed advantage over conventional wheeled trains and has the potential to reach speed levels achieved by aircraft. However, many expect that Maglev technology to be a green technology that is applied not only in rail transportation, but also in diverse other fields; to ensure clean transfer in LCD manufacturing, in ropeless high speed elevators, small capacity rail transportation, space vehicle launchers, missile testers, energy storage, and so on. These potential applications and their unique challenges and proposed technological solutions are introduced and discussed in depth. The book will provide readers from academia, research institutes and industry with insights on where and how to apply Maglev technology, and will serve as a guide to the realization of their Maglev applications.
This volume contains the edited lectures of the fourth Mittelwihr
school on "Magnetism
This book addresses the nonlinear interactions of ultra-high-intensity electromagnetic radiation with matter. It describes fundamentally new regimes of laser pulse propagation, including relativistic and charge-displacement self-channelling and instabilities of electromagnetic radiation in plasmas (Raman scattering by plasmons, harmonic excitation, collective Compton effect). The analysis makes use of fully nonlinear models, analytical techniques and extensive simulations, whereby both qualitative and quantitative interpretations are included. The book provides a comprehensive introduction to laser physics at relativistic intensities that will be valuable to both researchers and graduate students.
A non-linear wave is one of the fundamental objects of nature. They are inherent to aerodynamics and hydrodynamics, solid state physics and plasma physics, optics and field theory, chemistry reaction kinetics and population dynamics, nuclear physics and gravity. All non-linear waves can be divided into two parts: dispersive waves and dissipative ones. The history of investigation of these waves has been lasting about two centuries. In 1834 J. S. Russell discovered the extraordinary type of waves without the dispersive broadening. In 1965 N. J. Zabusky and M. D. Kruskal found that the Korteweg-de Vries equation has solutions of the solitary wave form. This solitary wave demonstrates the particle-like properties, i. e. , stability under propagation and the elastic interaction under collision of the solitary waves. These waves were named solitons. In succeeding years there has been a great deal of progress in understanding of soliton nature. Now solitons have become the primary components in many important problems of nonlinear wave dynamics. It should be noted that non-linear optics is the field, where all soliton features are exhibited to a great extent. This book had been designed as the tutorial to the theory of non-linear waves in optics. The first version was projected as the book covering all the problems in this field, both analytical and numerical methods, and results as well. However, it became evident in the process of work that this was not a real task.
The aim of this book is to provide both an introduction and a state-of-the-art report on research into magnetism and magnetic materials. Particular emphasis has been put on the contribution of synchrotron radiation in relevant experimental investigations. Graduate students and nonspecialists will benefit from the tutorial approach while specialists will find the latest results that round off the material presented in the lectures.
Pulse Dipolar Electron Spin Resonance: Distance Measurements by Peter P. Borbat, Jack H. Freed.Interpretation of Dipolar EPR Data in Terms of Protein Structure, by Gunnar Jeschke.Site-Directed Nitroxide Spin Labeling of Biopolymers, by Sandip A. Shelke and Snorri Th. Sigurdsson. Metal-Based Spin Labeling for Distance Determination, by Daniella Goldfarb. Structural Information from Spin-Labelled Membrane-Bound Proteins, by Johann P. KLare, Heinz-Jurgen Steinhoff. Structural Information from Oligonucleotides, by Richard Ward and Olav Schiemann. Orientation selective DEER using rigid spin labels, cofactors, metals, and clusters, by Claudia E. Tait, Alice M. Bowen, Christiane R. Timmel, Jeffrey Harmer
Market: Students in undergraduate courses in electromagnetism. This innovative textbook provides students with a modern view of the unity of electromagnetism by forsaking the traditional historically ordered development for a more logically ordered one. This approach involves the introduction of Maxwell's equations at the earliest opportunity to serve as the basis for everything that follows.
The study of the spontaneous formation of nanostructures in single crystals is rapidly developing into a dominant field of research in the subject area known as strongly correlated electrons. The structures appear to originate in the competition of phases. This book addresses nanoscale phase separation, focusing on the manganese oxides with colossal magnetoresistance (CMR). The text argues that nanostructures are at the heart of the CMR phenomenon. Other compounds are also addressed, such as high-temperature superconductors, where similar nanostructures exist. Brief contributions by distinguished researchers are also included. The book contains updated information directed at experts, both theorists and experimentalists. Beginning graduate students or postdocs will also benefit from the introductory material of the early chapters, and the book can be used as a reference for an advanced graduate course.
Translated from the Japanese, this title is the first modern book on magnetics, a topic of increasing importance. The book provides the foundation for further development in this field, covering magnetic ions in crystals, and magnetism of spin systems, metals and dilute alloys.
Molecular magnetism is a new field of research dealing with the
synthesis and study of the physical properties of molecular
assemblies involving open-shell units. It is essentially
interdisciplinary, joining together organic, organometallic and
inorganic chemists, as well as theoreticians, physicists and
materials scientists.
The International Workshop on Coherent Control of Carrier Dynamics in Semiconductors was held May 19 to 22, 1998 at the University of Illinois at Chicago. Its intent was to bring together an international and interdisciplinary group of scientists to discuss recent progress, pertinent problems, and open questions in the field of coherent control in atoms, molecules, and semiconductors, in particular. Twenty-seven scientists from the physical chemistry, quantum optics, semiconductor, electrical engineering, and laser communities accepted our invitation and made this event a meeting of exciting presentations and vivid discussions. This volume contains the proceedings of this workshop. Most speakers accepted our invitation to provide a manuscript either on specific aspects of their work or a brief review of their area of research. All manuscripts were reviewed. It is hoped that they provide not merely an overview of most of the issues covered during the workshop, but also represent an account of the current state of coherent control in general. Hence, it is hoped that they are also of interest to a large number of scientists active in one of the areas listed above. The organizers of this workshop would like to thank all the participants for making this meeting a complete success. We are particularly indebted to Dr. Larry R. Cooper at the U.S. Office of Naval Research and Dr.
In The New Superconductors, Frank J. Owens and Charles P. Poole, Jr., offer a descriptive, non-mathematical presentation of the latest superconductors and their properties for the non-specialist. Highlights of this up-to-date text include chapters on superfluidity, the latest copper oxide types, fullerenes, and prospects for future research. The book also features many examples of commercial applications; an extensive glossary that defines superconductivity terms in clear language; and a supplementary list of readings for the interested lay reader.
While magnetic devices are used in a range of applications, the availability of up-to-date books on magnetic measurements is quite limited. Collecting state-of-the-art knowledge from information scattered throughout the literature, Handbook of Magnetic Measurements covers a wide spectrum of topics pertaining to magnetic measurements. It describes magnetic materials and sensors, the testing of magnetic materials, and applications of magnetic measurements. Suitable for specialists as well as readers with minimal knowledge of magnetic measurements, the book begins with an easy-to-follow introduction to the essentials of magnetic measurements. It then offers a comprehensive review of various modern magnetic materials, such as soft and hard magnetic materials and thin magnetic films. The text also describes all commonly used magnetic field sensors, including inductive, fluxgate, Hall, magnetoresistive, resonance, SQUID, magnetoelastic, and magnetooptical sensors. The final chapters discuss the nondestructive testing of materials and explore applications related to magnetic measurements, including magnetic diagnostics in medicine, magnetoarcheology, and magnetic imaging. A thorough overview of magnetic measurements, this handbook helps readers navigate the sometimes impenetrable terms of the field. It also assists them in the quest to design electromagnetic devices in a more effective way.
It is widely recognized that an understanding of the optical pro perties of matter will give a great deal of important information re levant to the fundamental physical properties. This is especially true in semiconductor physics for which, due to the intrinsic low screening of these materials, the optical response is quite rich. Their spectra reflect indeed as well electronic as spin or phonon transitions. This is also in the semiconductor field that artificial structures have been recently developed, showing for the first time specific physical properties related to the low dimentionality of the electronic and vi bronic properties: with this respect the quantum and fractional quan tum Hall effects are among the most well known aspects. The associated reduced screening is also a clear manifestation of these aspects and as such favors new optical properties or at least significantly enhan ces some of them. For all these reasons, it appeared necessary to try to review in a global way what the optical investigation has brought today about the understanding of the physics of semiconductors. This volume collects the papers presented at the NATO Advanced study Inst i tut e on "Optical Properties of Semiconductors" held at the Ettore Majorana Centre, Erice, Sicily on March 9th to 20th, 1992. This school brought together 70 scientists active in research related to optical properties of semiconductors. There were 12 lecturers who pro vided the main contributions ."
Detailed coverage of all aspects of microwave superconductivity: fundamentals, fabrication, measurement, components, circuits, cryogenic packaging and market potential. Both a graduate-level textbook and a reference for microwave engineers. Applications (with either active or passive circuit elements) include those at both liquid-helium and liquid-nitrogen temperatures. Topics covered include wireless communications, space-based cryoelectronics, SQUIDs and SQUID amplifiers, NMR and MRI coils, accelerator cavities, and Josephson flux-flow devices.
This textbook is a revised and enlarged version of notes written for a one-semester course on electromagnetism. It covers the theory of electromagnetic phenomena in vacuum and in material media. In addition to the classical themes of electrodynamics, the book deals with some related subjects of particular current interest, such as superconductivity and numerical methods. Much emphasis is put on special relativity, in the covariant formulation of electromagnetism, and in the symmetry properties of the theory. The book includes a CD-ROM with didactic software, to solve boundary value problems in electrostatics and magnetostatics. The book is conceived in such a way as to guide the reader from the fundamentals of the theory to its most recent modern applications.
This long awaited second edition traces the original developments from the 1970s and brings them up to date with new and previously unpublished material to give this work a new lease of life for the early twenty-first century and readers new to the topic. In the winter of 1970-71, Colman Altman had been finding almost exact symmetries in the computed reflection and transmission matrices for plane-stratified magnetoplasmas when symmetrically related directions of incidence were compared. At the suggestion of Kurt Suchy the complex conjugate wave fields, used to construct the eigenmode amplitudes via the mean Poynting flux densities, were replaced by the adjoint wave fields that would propagate in a medium with transposed constitutive tensors, to yield a scattering theorem - reciprocity in "k"-space -- in the computer output. To prove the result analytically, one had to investigate the properties of the adjoint Maxwell system, and the two independent proofs that followed, in 1975 and 1979, proceeded according to the personal preference of each of the authors. The proof given in this volume, based on the hindsight provided by later results, is much more simple and concise. Later, when media with bianisotropic constitutive tensors were investigated, it was found that conjugate (reciprocal) media and wave fields could be formed by any orthogonal spatial mapping of those in the original problem, after media and fields were reversed in time. The result was still quite general and not limited to stratified systems. The second line of development was to find the link between reciprocity in "k"-space and Lorentz reciprocity involving currents and sources in physical space. This was done for plane-stratified media by applying the scattering theorem to the plane-wave spectrum of eigenmodes radiated by one current source and reaching the second source. The reverse linkage between Lorentz reciprocity and reciprocity in "k"-space had already been found. However, this was the first time that the results were presented in a systematic and mathematically well-defined procedure to serve as a tool for solving problems of reciprocity and scattering symmetries. The use of time reversal gives rise to problems of causality when sources are present, but when the interaction between two systems is involved the non-causal effects are irrelevant. The insight gained during these investigations enabled the authors to present many of the earlier theorems and results, both their own and those of others, in a compact and unified approach, which has been the main strength of this book. This new edition has been revised, corrected and updated where necessary to give a complete picture of this interesting topic for the present generation of scientists. |
You may like...
Absolutism versus Relativity - Volume I…
Mohammad Javanshiry
Hardcover
R1,447
Discovery Miles 14 470
Wind Turbines - Advances and Challenges…
Karam Maalawi
Hardcover
The Electron - Its Isolation and…
Robert Andrews 1868-1953 Millikan
Hardcover
R863
Discovery Miles 8 630
|