![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Electricity, magnetism & electromagnetism
This thesis elucidates electron correlation effects in topological matter whose electronic states hold nontrivial topological properties robust against small perturbations. In addition to a comprehensive introduction to topological matter, this thesis provides a new perspective on correlated topological matter. The book comprises three subjects, in which electron correlations in different forms are considered. The first focuses on Coulomb interactions for massless Dirac fermions. Using a perturbative approach, the author reveals emergent Lorentz invariance in a low-energy limit and discusses how to probe the Lorentz invariance experimentally. The second subject aims to show a principle for synthesizing topological insulators with common, light elements. The interplay between the spin-orbit interaction and electron correlation is considered, and Hund's rule and electron filling are consequently found to play a key role for a strong spin-orbit interaction important for topological insulators. The last subject is classification of topological crystalline insulators in the presence of electron correlation. Unlike non-interacting topological insulators, such two- and three-dimensional correlated insulators with mirror symmetry are demonstrated to be characterized, respectively, by the Z4 and Z8 group by using the bosonization technique and a geometrical consideration.
This book brings together numerous contributions to the field of magnetoelectric (ME) composites that have been reported so far. Theoretical models of ME coupling in composites relate to the wide frequency range: from low-frequency to microwave ones and are based on simultaneous solving the elastostatic/elastodynamic and electrodynamics equations. Suggested models enable one to optimize magnetoelectric parameters of a composite. The authors hope to provide some assimilation of facts into establish knowledge for readers new to the field, so that the potential of the field can be made transparent to new generations of talent to advance the subject matter.
This book gives an overview of the physics of Heusler compounds ranging from fundamental properties of these alloys to their applications. Especially Heusler compounds as half-metallic ferromagnetic and topological insulators are important in condensed matter science due to their potential in magnetism and as materials for energy conversion. The book is written by world-leaders in this field. It offers an ideal reference to researchers at any level.
This is a comprehensive text on electrodynamics with detailed explanations and calculations. One hundred worked examples have been incorporated, making this book also suitable for self-instruction. Apart from all traditional topics of the Maxwell's theory, this book includes the special theory of relativity and the Lagrangian formalism and applications; the text also contains introductions to quantum effects related to electrodynamics, such as the Aharonov-Bohm and the Casimir effects. Numerous modern applications in diverse directions are treated in the examples.
When the stream of plasma emitted from the Sun (the solar wind) encounters Earth's magnetic field, it slows down and flows around it, leaving behind a cavity, the magnetosphere. The magnetopause is the surface that separates the solar wind on the outside from the Earth's magnetic field on the inside. Because the solar wind moves at supersonic speed, a bow shock must form ahead of the magnetopause that acts to slow the solar wind to subsonic speeds. Magnetopause, bow shock and their environs are rich in exciting processes in collisionless plasmas, such as shock formation, magnetic reconnection, particle acceleration and wave-particle interactions. They are interesting in their own right, as part of Earth's environment, but also because they are prototypes of similar structures and phenomena that are ubiquitous in the universe, having the unique advantage that they are accessible to in situ measurements. The boundaries of the magnetosphere have been the target of direct in-situ measurements since the beginning of the space age. But because they are constantly moving, changing their orientation, and undergoing evolution, the interpretation of single-spacecraft measurements has been plagued by the fundamental inability of a single observer to unambiguously distinguish spatial from temporal changes. The boundaries are thus a prime target for the study by a closely spaced fleet of spacecraft. Thus the Cluster mission, with its four spacecraft in a three-dimensional configuration at variable separation distances, represents a giant step forward. This 20th volume of the ISSI Space Science Series represents the first synthesis of the exciting new results obtained in the first few years of the Cluster mission.
This comprehensive, detailed treatise on the physics and applications of the new emerging technology of amorphous semiconductors focuses on specific device research problems such as the optimization of device performance. The first part of the book presents hydrogenated amorphous silicon type alloys, whose applications include inexpensive solar cells, thin film transistors, image scanners, electrophotography, optical recording and gas sensors. The second part of the book discusses amorphous chalcogenides, whose applications include electrophotography, switching, and memory elements. This book will serve as an excellent reference source for solid state scientists and engineers, and as a useful self-contained introduction to the field for graduate students.
Basic Electromagnetism and Materials is the product of many years of teaching basic and applied electromagnetism. This textbook can be used to teach electromagnetism to a wide range of undergraduate science majors in physics, electrical engineering, or materials science. However, by making lesser demands on mathematical knowledge than competing texts, and by emphasizing electromagnetic properties of materials and their applications, this textbook is particularly appropriate for students of materials science. Many competing texts focus on the study of propagation waves either in the microwave or optical domain, whereas Basic Electromagnetism and Materials covers the entire electromagnetic domain and the physical response of materials to these waves.
Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: * magnet systems, * plasma heating systems, * control systems, * energy conversion systems, * advanced materials development, * vacuum systems, * cryogenic systems, * plasma diagnostics, * safety systems, and * power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.
This book is a collection of the papers presented at the workshop on "Symmetry and Heterogeneity in High Tc Superconductors" directed by Antonio Bianconi and Alexander F. Andreev in collaboration with K. Alex Muller and Giorgio Benedek. Philip B. Allen, Neil W. Ashcroft, Alan R. Bishop, J. C. Seamus Davis, Takeshi Egami, Francesco Iachello, David Pines, Shin-ichi Uchida, Subodh R. Shenoy, chaired hot sessione contributing to the success of the workshop. The object of the workshop was the quantum mechanism that allows the macroscopic quantum coherence of a superconducting condensate to resist to the attacks of high temperature. Solution to this problem of fundamental physics is needed for the design of room temperature superconductors, for controlling the decoherence effects in the quantum computers and for the understanding of a possible role of quantum coherence in living matter that is debated today in quantum biophysics. The discussions in the informal and friendly atmosphere of Erice was on new experimental data showing that high T in doped cuprate perovskites is c related with the nanoscale phase separation and the two component scenario, the two-band superconductivity in magnesium diboride and the lower symmetry in the superconducting elements at high pressure."
This volume provides a fresh and unique teaching tool. Over the last decade device performances are driven by new materials, scaling, heterostructures and new device concepts. Semiconductor devices have mostly relied on Si but increasingly GaAs, InGaAs and heterostructures made from Si/SiGe, GaAs/AlGaAs etc have become important. Over the last few years one of the most exciting new entries has been the nitride based heterostructures. New physics based on polar charges and polar interfaces has become important as a result of the nitrides. Nitride based devices are now used for high power applications and in lighting and display applications. For students to be able to participate in this exciting arena, a lot of physics, device concepts, heterostructure concepts and materials properties need to be understood. It is important to have a textbook that teaches students and practicing engineers about all these areas in a coherent manner.
This book presents both experimental and theoretical aspects of topology in magnetism. It first discusses how the topology in real space is relevant for a variety of magnetic spin structures, including domain walls, vortices, skyrmions, and dynamic excitations, and then focuses on the phenomena that are driven by distinct topology in reciprocal momentum space, such as anomalous and spin Hall effects, topological insulators, and Weyl semimetals. Lastly, it examines how topology influences dynamic phenomena and excitations (such as spin waves, magnons, localized dynamic solitons, and Majorana fermions). The book also shows how these developments promise to lead the transformative revolution of information technology.
This book is devoted to the theory of electrodynamic phenomena in systems under an external magnetic field. The analysis is based on Maxwell's equations. We present the fundamentals of magnetostatics, quasistatic electromagnetic fields and electromagnetic wave propagation. The main part of the book describes the behaviour of a charged particle in an electromagnetic field, and the electrodynamics of plasmas, liquid crystals and superconductors. These very different subjects have an important common feature, namely the fundamental role played by the magnetic field. Plasmas, liquid crystals and superconductors can be considered as magnetoactive media, because their electromagnetic characteristics are strongly affected by an external magnetic field. The book will be useful for graduate students in physics, experimentalists, and engineers in high-tech industries.
EMATs for Science and Industry comprises the physical principles of
electromagnetic acoustic transducers (EMATs) and the applications
to scientific and industrial ultrasonic measurements on materials.
The text is arranged in four parts:
Metamaterials: Theory, Design, and Applications goes beyond left-handed materials (LHM) or negative index materials (NIM) and focuses on recent research activity. Included here is an introduction to optical transformation theory, revealing invisible cloaks, EM concentrators, beam splitters, and new-type antennas, a presentation of general theory on artificial metamaterials composed of periodic structures, coverage of a new rapid design method for inhomogeneous metamaterials, which makes it easier to design a cloak, and new developments including but not limited to experimental verification of invisible cloaks, FDTD simulations of invisible cloaks, the microwave and RF applications of metamaterials, sub-wavelength imaging using anisotropic metamaterials, dynamical metamaterial systems, photonic metamaterials, and magnetic plasmon effects of metamaterials.
Mossbauer spectroscopy is uniquely able to probe hyperfine interactions by looking at the short-range order of resonant atoms. Materials containing an appropriate isotope as one of their constituent atoms, such as iron or tin, are readily investigated. But even materials that do not contain Mossbauer-active atoms can be investigated if the probe atoms are incorporated in minor quantities (ca. 0.1 at.-%) to act as molecular-level indicators. These 35 papers collected here represent a state-of-the-art description of Mossbauer spectroscopy techniques applied to advanced materials. The topics covered comprise investigations of nanomaterials, nanoparticles, and quasicrystals, artificially structured materials as well as applications of Mossbauer spectroscopy in chemistry, mineralogy and metallurgy. The main aim of is the dissemination of information on research and recent developments of the method in materials science as obtained in leading Mossbauer laboratories. "
This volume is composed of topical review articles written by
leading authorities in the field. As in previous volumes in the
series, each article presents an extensive description in graphical
as well as in tabular form, placing emphasis on the discussion of
the experimental material in the framework of physics, chemistry
and material science.
Some ferromagnetic materials with localized magnetic moments have become a hot topic of modern solid state physics because of their potential applications, e.g. in spintronic devices. The magnetic systems of interest comprise diluted magnetic semiconductors and half-metallic ferromagnets. Like conventional concentrated local-moment systems, they are characterized by an exchange interaction between localized magnetic moments and quasi-free charge carriers. The current research on local-moment ferromagnetism is reviewed in a tutorial style by leading experts in this field. Experimentalists present the latest approaches to characterize the unique material properties and theoreticians share decisive ideas to describe the observed phenomena theoretically. Students and researchers alike will benefit from this status report.
This book offers a comprehensive summary of experiments that are especially suited to reveal the order-parameter symmetry of unconventional superconductors. It briefly introduces readers to the basic theoretical concepts and terms of unconventional superconductivity, followed by a detailed overview of experimental techniques and results investigating the superconducting energy gap and phase, plus the pairing symmetry. This review includes measurements of specific heat, thermal conductivity, penetration depth and nuclearmagnetic resonance and muon-spin rotation experiments. Further, point-contact and tunnelling spectroscopy and Josephson experiments are addressed. Current understanding is reviewed from the experimental point of view. With an appendix offering five tables with almost 200 references that summarize the present results from ambient pressure heavy-fermion and noncopper-oxide superconductors, the monograph provides a valuable resource for further studies in this field.
This text book gives a comprehensive account of magnetism, one of the oldest yet most vibrant fields of physics. It spans the historical development, the physical foundations and the continuing research underlying the subject. The book covers both the classical and quantum mechanical aspects of magnetism and novel experimental techniques. Perhaps uniquely, it discusses spin transport and magnetization dynamics phenomena associated with atomically and spin engineered nano-structures against the backdrop of spintronics and magnetic storage and memory applications. The book is for students, and serves as a reference for scientists in academia and research laboratories.
This book provides an up-to-date review of nanometer-scale magnetism and focuses on the investigation of the basic properties of magnetic nanostructures. It describes a wide range of physical aspects together with theoretical and experimental methods. A broad overview of the latest developments in this emerging and fascinating field of nanostructured materials is given with emphasis on the practical understanding and operation of submicron devices based on nanostructured magnetic materials.
Presents the fundamental physics of piezoelectric sensors. Only book with this scope Targeted to those engineers, phycisists and chemists who are involved in materials processing, device design and manufacturing.
Serbian inventor NIKOLA TESLA (1857-1943) was a revolutionary scientist who forever changed the scientific fields of electricity and magnetism. Tesla's greatest invention, A/C current, powers almost all of the technological wonders in the world today, from home heating to computers to high-tech robotics. His discoveries gave mankind the television. And his dream of wireless communication came to pass in both the radio and eventually the cell phone. Yet his story remains widely unknown. History buffs, science enthusiasts, backyard inventors, and anyone who has ever dared to dream big will find the life of Nikola Tesla, written in his own words, engaging, informative, and humorous in its eccentricity.
In the modern semiconductor industry, there is a growing need to understand and combat potential radiation damage problems. Space applications are an obvious case, but, beyond that, today's device and circuit fabrication rely on increasing numbers of processing steps that involve an aggressive environment where inadvertant radiation damage can occur. This book is both aimed at post-graduate researchers seeking an overview of the field, and will also be immensely useful for nuclear and space engineers and even process engineers. A background knowledge of semiconductor and device physics is assumed, but the basic concepts are all briefly summarized. Finally the book outlines the shortcomings of present experimental and modeling techniques and gives an outlook on future developments. |
![]() ![]() You may like...
Earth's Magnetosphere - Formed by the…
Wayne Keith, Walter Heikkila
Paperback
R3,465
Discovery Miles 34 650
Absolutism versus Relativity - Volume I…
Mohammad Javanshiry
Hardcover
R1,516
Discovery Miles 15 160
Nonlinear Magnetization Dynamics in…
Isaak D. Mayergoyz, Giorgio Bertotti, …
Hardcover
R2,718
Discovery Miles 27 180
Paleomagnetism, Volume 73 - Continents…
Michael W. McElhinny, Phillip L. McFadden
Hardcover
R1,446
Discovery Miles 14 460
Ferrite Nanostructured Magnetic…
Jitendra Pal Singh, Keun Hwa Chae, …
Paperback
R6,675
Discovery Miles 66 750
|