Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Electricity, magnetism & electromagnetism
Despite the recent development and interest in the photonics of metallic wire structures, the relatively simple concepts and physics often remain obscured or poorly explained to those who do not specialize in the field. Electromagnetic Behaviour of Metallic Wire Structures provides a clear and coherent guide to understanding these phenomena without excessive numerical calculations. Including both background material and detailed derivations of the various different formulae applied, Electromagnetic Behaviour of Metallic Wire Structures describes how to extend basic circuit theory relating to voltages, currents, and resistances of metallic wire networks to include situations where the currents are no longer spatially uniform along the wire. This lays a foundation for a deeper understanding of the many new phenomena observed in meta-electromagnetic materials. Examples of applications are included to support this new approach making Electromagnetic Behaviour of Metallic Wire Structures a comprehensive and self-contained volume suitable for use by specialists, non-specialist, researchers and professionals in other relevant fields and even students.
Today high magnetic fields play an increasingly important role in many scientific fields. Formerly their use was largely restricted to the measurement of physical phenomena and the characterization of materials. But more recently they have found application in many new areas such as materials processing, crystal growth, and even in chemistry and biology. This book gives a broad survey of some of the most exciting recent applications of high magnetic fields, with the emphasis on materials science. These include, among others, the study of conventional and high-Tc superconductors, semiconductors, low-dimensional organic conductors, conducting polymers and protein crystallization. Each chapter begins with a general introduction and goes on to present detailed experimental results together with their interpretation. Researchers and students alike will find this book an excellent introduction to, and overview of current applications of static high magnetic fields.
This textbook sets out to enable readers to understand fundamental aspects underlying quantum macroscopic phenomena in solids, primarily through the modern experimental techniques and results. The classic independent-electrons approach for describing the electronic structure in terms of energy bands helps explain the occurrence of metals, insulators and semiconductors. It is underlined that superconductivity and magnetism can only be understood by taking into account the interactions between electrons. The text recounts the experimental observations that have revealed the main properties of the superconductors and were essential to track its physical origin. While fundamental concepts are underlined, those which are required to describe the high technology applications, present or future, are emphasized as well. Problem sets involve experimental approaches and tools which support a practical understanding of the materials and their behaviour.
Terahertz technology has moved on from being a useful but expensive circuit technique, applied largely in astronomy and space science, to become a subject in its own right, with important applications - terahertz imaging in particular. Indeed, the driving force in terahertz technology is currently imaging and spectroscopy. We now have the means to obtain images and chemical information in this frequency band. The images reproduced in this volume are striking and, not surprisingly, the clinical and analytical uses are the subject of intense activity. There is still, however, no complete range of active THz electronic components, but an encouraging conclusion of the book is that THz electronics will become necessary in communications systems in the foreseeable future. Terahertz technology has come of age, and the future lies open to new, exciting science and vital applications.
This book offers an extensive introduction to the extremely rich and intriguing field of spin-related phenomena in semiconductors. In this second edition, all chapters have been updated to include the latest experimental and theoretical research. Furthermore, it covers the entire field: bulk semiconductors, two-dimensional semiconductor structures, quantum dots, optical and electric effects, spin-related effects, electron-nuclei spin interactions, Spin Hall effect, spin torques, etc. Thanks to its self-contained style, the book is ideally suited for graduate students and researchers new to the field.
The book is devoted to the study of optical patterns and to optical bistability and hysteresis. In its methodology it is at the intersection of investigations in synergetics and modern nonlinear optics. This first monograph on optical patterns addresses researchers as well as students. The author studies the rich class of spatially distributed bistable optical systems, and especially dissipative optical solitons which resemble molecules, crystals or biological objects when combined. The author studies further the inhomogeneities of bistable systems and gives a consistent description of spatial hysteresis. Further topics include diffractive mechanisms for coupling, three-dimensional optical solitons, quantum aspects and optical information processing, lasers with a saturable absorber, non-linear waveguides and fibers with nonlinear gain or losses.
Magnetoelectronics is a novel and rapidly developing field. This
new field is frequently referred to as spin-electronics or
spintronics. It includes spin-utilizing devices that need neither a
magnetic field nor magnetic materials. In semiconductor devices,
the spin of the carriers has only played a very modest role so far
because well established semiconductor devices are non-magnetic and
show only negligible effects of spin. Nanoscale thin films and
multilayers, nanocrystalline magnetic materials, granular films,
and amorphous alloys have attracted much attention in the last few
decades, in the field of basic research as well as in the broader
field of materials science. Such heterogeneous materials display
uncommon magnetic properties that virtually do no occur in bulk
materials. This is true, in particular with respect to surface
(interface) magnetic anisotropy and surface (interface)
magnetostrictive strains and giant magnetoresistance. The local
atomic arrangement at the interface differs strongly from that in
the bulk. The local symmetry is lowered, so that some interactions
are changed or are missing altogether.
The large handbooks in physics, chemistry and other disciplines contain data needed every day as well as additional equally important data needed only at longer time intervals. This volume contains the updated and extended data for a large number of semiconducting materials. The CD-ROM accompanying the handbook contains additional figures and references embedded in an extended electronic version of the printed handbook. Full text search is possible.
Volume 7 of the Handbook of Magnetic Materials provides an overview of some of the most exciting topics in magnetism today. Firstly, a substantial step forward in the understanding of metallic magnetism has been reached by means of electronic band structure calculation. Progress in this area has been made not only due to the availability of high speed computing machines but also due to sophistication in the computational methodology. Two chapters are devoted to this subject, one of which is devoted to the elements and the other dealing primarily with 4f and 5f systems, including examples of the large group of intermetallic compounds. In both chapters the authors have concentrated on explaining the physics behind these band calculations. The chapters are written in a manner understandable to scientists having no experience with band calculations. Thin film technology has become a key issue in high density
magnetic and magneto-optical recording and will be dealt with in
future volumes of the Handbook. The present volume introduces the
field with a chapter on the magnetism of ultrathin transition metal
films, describing the richness in novel magnetic phenomens that has
been encountered in the past few years in these materials. Of equal
interest are the novel magnetic phenomena observed when magnetic
moments are incorporated in a semiconducting matrix. A
comprehensive description of these materials is found in the
chapter on diluted magnetic semiconductors. A separate chapter is
devoted to the progress made in the field of heavy fermions and
valence fluctuations, emphasis being placed on the important
results obtained by means of neutron scattering. A detailed review
of the progress made in the field of rare earth based intermetallic
compounds in combination with 3d transition metals completes this
multifaceted volume.
This book covers the subject of Biological Effects of EMF in its entirety. First it covers both high and low frequency effects, explains thoroughly the mechanisms of interaction between EMF and biological systems and provides the necessary mathematical modeling for EMF absorption. Experimental verification of the theoretical results is given when at all possible and it is expected to open new areas of research as well as provide the material for university course creation. Topics as Ion Cyclotron Resonance in biological systems, thermal and dissipation effects of mobile system radiation, effects of transmission lines and railway radiation, effects on the reproductive capacity of specific insects, on the immune systems on embryos and fetuses, blood parameters and behavior of rats, as well as health risk assessment and the therapeutic effects of EMF are thoroughly covered.
This text provides techniques for use in determining electromagnetic fields in layered dielectric media. It contains problem sets and practical examples and solutions as well as a simplified method for approaching problems. This book is aimed at research engineers, scientists and graduate students specializing in printed circuits and antennas.
The book covers the main aspects of dynamic phenomena in confined magnetic structures on a level that researchers find a comprehensive compilation of the current status in the field. Introductory chapters help the newcomer to understand the basic concepts, and more advanced chapters give the current state of the art on most spin dynamic aspects ranging from milliseconds to femtoseconds. Emphasis is placed both on the discussion of the experimental techniques and on the theoretical work. The comprehensive presentation of these developments makes this volume very timely and valuable for every researcher working in the field of magnetism.
This monograph assimilates new research in the field of low-dimensional metals. It provides a detailed overview of the current status of research on quasi-one- and two-dimensional molecular metals, describing normal-state properties, magnetic field effects, superconductivity, and the phenomena of interacting p and d electrons. It includes a number of findings likely to become standard material in future textbooks on solid-state physics.
This book present the lecture notes used in two courses that the late Professor Kasra Barkeshli had offered at Sharif University of Technology, namely, Advanced Electromagnetics and Scattering Theory. The prerequisite for the sequence is vector calculus and electromagnetic fields and waves. Some familiarity with Green's functions and integral equations is desirable but not necessary. The book provides a brief but concise introduction to classical topics in the field. It is divided into three parts including annexes. Part I covers principle of electromagnetic theory. The discussion starts with a review of the Maxwell's equations in differential and integral forms and basic boundary conditions. The solution of inhomogeneous wave equation and various field representations including Lorentz's potential functions and the Green's function method are discussed next. The solution of Helmholtz equation and wave harmonics follow. Next, the book presents plane wave propagation in dielectric and lossy media and various wave velocities. This part concludes with a general discussion of planar and circular waveguides. Part II presents basic concepts of electromagnetic scattering theory. After a brief discussion of radar equation and scattering cross section, the author reviews the canonical problems in scattering. These include the cylinder, the wedge and the sphere. The edge condition for the electromagnetic fields in the vicinity of geometric discontinuities are discussed. The author also presents the low frequency Rayleigh and Born approximations. The integral equation method for the formulation of scattering problems is presented next, followed by an introduction to scattering from periodic structures. Part III is devoted to numerical methods. It begins with finite-difference methods to solve elliptic equations, and introduces the finite-difference time-domain method for the solution of hyperbolic and parabolic equations. Next, the part turns to the method of moments for the solution of integral equations. This part ends with a short introduction to the finite-element method.
A collection of articles on different approaches to the investigation of surface effects on nanosized magnetic materials, with special emphasis on magnetic nanoparticles. The book provides an overview of progress in the field through recent results.
This thesis demonstrates the novel magnetic functionalities in cyanido-bridged metal assemblies, and as such appeals to readers in the field of materials science. The utilization of octacyanidometalates as building blocks enables the observation of (i) photo-induced magnetization due to a light-induced spin-crossover in an iron octacyanidoniobate-based assembly, (ii) photo-induced magnetization with a two-step spin-crossover behavior in an iron octacyanidoniobate-based material, and (iii) the coexistence of super-ionic conductivity and metamagnetism in a manganese-octacyanoniobate system. These multi-functionalities are achieved by incorporating a spin-crossover moiety or a hydrogen-bonding network into a cyanido-bridged network structure with a strong magnetic interaction. In particular, in light-induced spin-crossover magnets, a magnetically non-ordered state can be altered to a magnetically ordered state by photo-irradiation, which is one of the attractive mechanisms for novel optical switching devices.
This textbook gives a comprehensive survey of the analytical treatment of MRI physics and engineering. It gives readers the background to apply MRI in medicine or design (sub)systems or sequences for new applications. Special attention is paid to the treatment of intrinsic artifacts of the different sequences, which can be described in a mathematically uniform way for the different scan methods. The book contains many images, especially showing specific properties of the different scan methods. The methods discussed include RARE, GRASE, EPI and Spiral Scan. The 2nd edition and 3rd editions were expanded and refined. The chapter on motion and flow was expanded, and a chapter added on the configuration theory and multipulse sequences such as BURST, TSE and FFE. A.L. Luiten gives an overview of the early history of MRI imaging. The 3rd edition deals with stranger gradient and new RF coil systems, and sequences such as Balanced FFE and q-space diffusion imaging and SENSE.
Written by leading experts in the field of band-ferromagnetism, this book is intended to give a status report on our understanding of this complicated and fascinating problem of solid state physics. Modern developments are presented and explained in a tutorial style, emphasizing the decisive ideas and the hot topics of current and future research on band-ferromagnetism. The authors include experimentalists and theoreticians working on different aspects of magnetism and employing a variety of techniques. In particular, they treat the following five central themes: Ground-State Properties, Finite-Temperature Electronic Structure, Models of Band-Ferromagnetism, Low-Dimensional Systems, Understanding Spectroscopies. The book will be of benefit to students and researchers alike.
Surveys the monopole problem on a few different levels, from classical electrodynamics up to N=2 SUSY Yang-Mills theory. and presents a compact, bird's eye view' on the entire set of problems related with very notion of monopole including actual stand of the problem, related historical remarks and comprehensive bibliography. Presents original results obtained by the author in collaboration with other researches are presented as well as it summarizes the present status of the theory of monopoles and provides an introduction to the field.
This second volume of the book on spin dynamics in confined magnetic structures covers central aspects of spin dynamic phenomena, so that researchers can find a comprehensive compilation of the current work in the field. Introductory chapters help newcomers to understand the basic concepts, and the more advanced chapters give the current state of the art for most spin dynamic issues in the milliseconds to femtoseconds range. Both experimental techniques and theoretical work are discussed. The comprehensive presentation of these developments makes this volume very timely and valuable for every researcher working in the field of magnetism. It describes the new experimental techniques which have advanced this field very rapidly. Among the techniques covered, particular attention is given to those involving high temporal, elemental and spatial resolution as well as to techniques involving magnetic field pulses with very short rise times and durations.
The Sixth Conference on Ultra-Wideband, Short-Pulse Electromagnetics (UWB SP6), chaired by Eric Mokole of the United States Naval Research Laboratory (NRL) and hosted by the NRL and the United States Naval Academy (USNA), was held at the USNA in Annapolis Maryland (USA) from 3-7 June 2002. UWB SP6 was part of the AMEREM 2002 Symposium, chaired by Terence Wieting of the NRL. AMEREM 2002 continued the series of international conferences that were held in: Brooklyn New York at the Polytechnic University in 1992 and 1994; Albuquerque New Mexico in 1996 as part of AMEREM '96; Tel-Aviv Israel in 1998 as part of EUROEM '98; and Edinburgh Scotland in 2000 as part of EUROEM 2000. The next conference (UWB SP7) will be held from 12-16 July 2004 at Otto von Guericke University in Magdeburg Germany (EUROEM 2004) and will be chaired by Frank Sabath. The purpose of these meetings is: to focus on advanced technologies for the generation, radiation, and detection of ultrawideband (UWB) short-pulse signals, taking into account their propagation about, scattering from, and coupling to targets and media of interest; to report on developments in supporting mathematical and numerical methods; and to describe current and potential future applications of the technology. The session topics of UWB-SP6 included electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), pulsed, . power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-resolution techniques.
This bang up-to-date volume contains the distilled wisdom of some of the world 's leading minds on the subject. Inside, there is a treasure trove of general (tutorial) and topical reviews, written by leading researchers in the area of organic superconductors and conductors. The papers hail from all over the world, as far afield as the USA and Australia. They cover contemporary topics such as unconventional superconductivity, non-Fermi-liquid properties, and the quantum Hall effect. |
You may like...
White Fragility - Why It's So Hard For…
Robin DiAngelo
Paperback
(1)
Living While Black - The Essential Guide…
Guilaine Kinouani
Paperback
Complexity of Lattice Problems - A…
Daniele Micciancio, Shafi Goldwasser
Hardcover
R6,280
Discovery Miles 62 800
System-on-Chip Architectures and…
Maire McLoone, John V. McCanny
Hardcover
R2,888
Discovery Miles 28 880
|