Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Electricity, magnetism & electromagnetism
This monograph focuses on the influence of a strong magnetic field on the interactions between charged particles in a many-body system. Two complementary approaches, the binary collision model and the dielectric theory are investigated in both analytical and numerical frameworks. In the binary collision model, the Coulomb interaction between the test and the target particles is screened because of the polarization of the target.
Principles and Applications of ESR Spectroscopy fills the gap between the detailed monographs in ESR spectroscopy and the general textbooks in molecular physics, physical chemistry, biochemistry or spectroscopy. The latter only briefly explain the underlying theory and do not provide details about applications, while the currently available ESR textbooks are primarily focused on the technique as such. This text is based upon the authors long experience of teaching the subject to a mixed audience, in the extreme case ranging from physics to biology. The potential of the method is illustrated with applications in fields such as molecular science, catalysis and environmental sciences, polymer and materials sciences, biochemistry and radiation chemistry/physics. Theoretical derivations have in general been omitted, as they have been presented repeatedly in previous works. The necessary theory is instead illustrated by practical examples from the literature.
Magnetic multilayers is a rapidly growing and multidisciplinary field of research. The purpose of this book is to give a unified overview of recent progress, giving special emphasis to the most important industrial applications. A general introduction is followed by six chapters that describe a wide range of physical aspects, together with experimental and theoretical methods. Scientists and students alike will benefit from the comprehensive discussion of numerous devices and their physics. As the technology matures, these devices, for example spin valves and magnetic random access memories, are likely to become widely used.
This book is an excellent text for undergraduates majoring in physics and engineering. The style pedagogical with clear and concise illustration followed by practise problems at the end of each chapter.
The first part of this state-of-the-art book conveys the fundamentals of magnetism for atoms and bulk-like solid-state systems, providing a basis for understanding new phenomena which exclusively occur in low-dimensional systems as the giant magneto resistance. This wide field is discussed in the second part. Suitable for graduate students in physical and materials sciences, the book includes numerous examples, exercises, and references.
This book will be useful to solid-state scientists, device engineers, and students involved in semiconductor design and technology. It provides a lucid account of band structure, density of states, charge transport, energy transport, and optical processes, along with a detailed description of many devices. It includes sections on superlattices and quantum well structures, the effects of deep-level impurities on transport, and the quantum Hall effect. This 8th edition has been revised and updated, including several new sections.
Intersubband transitions in quantum wells have attracted tremendous attention in recent years, mainly due to the promise of applications in the mid and far-infrared regions (2--20 mum). Many of the papers presented in Quantum Well Intersubband Transition Physics and Devices are on the basic linear intersubband transition processes, detector physics and detector application, reflecting the current state of understanding and detector applications, where highly uniform, large focal plane arrays have been demonstrated. Other areas are still in their early stages, including infrared modulation, harmonic generation and emission.
Knowledge of the refractive indices and absorption coefficients of semiconductors is especially import in the design and analysis of optical and optoelectronic devices. The determination of the optical constants of semiconductors at energies beyond the fundamental absorption edge is also known to be a powerful way of studying the electronic energy-band structures of the semiconductors. The purpose of this book is to give tabulated values and graphical information on the optical constants of the most popular semiconductors over the entire spectral range. This book presents data on the optical constants of crystalline and amorphous semiconductors. A complete set of the optical constants are presented in this book. They are: the complex dielectric constant (E=e.+ieJ, complex refractive index (n*=n+ik), absorption coefficient (a.), and normal-incidence reflectivity (R). The semiconductor materials considered in this book are the group-IV elemental and binary, llI-V, IT-VI, IV-VI binary semiconductors, and their alloys. The reader will fmd the companion book "Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles" useful since it emphasizes the basic material properties and fundamental prinCiples.
The Workshop on Hybrid Formulations of Wave Propagat on and Scattering underwent a sequence of iterations before emerging in the format recorded here. These iterations were caused by various administrative and logistical problems which need not be detailed. However, its direction being set initially, the iterations led to modifications of the original concept so that the final form was arrived at through an indirect approach. This circumstance may ex plain some possible deficiencies which might have been removed, had the final concept been implemented directly. The motivation arose from a perception that the newly restored interest, coupled with new developments, in hybrid methods employ ing progressing wave fields and oscillatory wave fields for time harmonic and transient guided propagation in manmade or general geo physical environments, and for scattering by targets and irregulari ties, merits exposure to the wider scientific community. Accord ingly, a meeting with highly tutorial content was envisaged. For administrative reasons, related to sponsorship and organizational structure, this objective could not be realized but, eventually, there emerged the possibility of convening an Advanced Research Workshop (ARW) under the auspices of the NATO Advanced Study Insti tute Series. The original concept was then modified to accommodate a Workshop, wherein state-of-the-art science is discussed by a relatively small group of specialists, instead of tutorial presenta tions of more basic material."
Designed for non-specialists, this easy-to-read new edition provides a comprehensive and coherent account of static electric phenomena and concepts based on a mathematical-physical approach. It has been updated to include new and expanded material ranging from charge decay to electrostatic measurements.
Self-focusing has been an area of active scientific investigation for nearly 50 years. This book presents a comprehensive treatment of this topic and reviews both theoretical and experimental investigations of self-focusing. This book should be of interest to scientists and engineers working with lasers and their applications. From a practical point of view, self-focusing effects impose a limit on the power that can be transmitted through a material medium. Self-focusing also can reduce the threshold for the occurrence of other nonlinear optical processes. Self-focusing often leads to damage in optical materials and is a limiting factor in the design of high-power laser systems. But it can be harnessed for the design of useful devices such as optical power limiters and switches. At a formal level, the equations for self-focusing are equivalent to those describing Bose-Einstein condensates and certain aspects of plasma physics and hydrodynamics. There is thus a unifying theme between nonlinear optics and these other disciplines. One of the goals of this book is to connect the extensive early literature on self-focusing, filament-ation, self-trapping, and collapse with more recent studies aimed at issues such as self-focusing of fs pulses, white light generation, and the generation of filaments in air with lengths of more than 10 km. It also describes some modern advances in self-focusing theory including the influence of beam nonparaxiality on self-focusing collapse. This book consists of 24 chapters. Among them are three reprinted key landmark articles published earlier. It also contains the first publication of the 1964 paper that describes the first laboratory observation of self-focusing phenomena with photographic evidence.
The papers contained in the volume represent lectures delivered as a 1983 NATO ASI, held at Urbino, Italy. The lecture series was designed to identify the key submicron and ultrasubmicron device physics, transport, materials and contact issues. Nonequilibrium transport, quantum transport, interfacial and size constraints issues were also highlighted. The ASI was supported by NATO and the European Research Office. H. L. Grubin D. K. Ferry C. Jacoboni v CONTENTS MODELLING OF SUB-MICRON DEVICES.................. .......... 1 E. Constant BOLTZMANN TRANSPORT EQUATION... ... ...... .................... 33 K. Hess TRANSPORT AND MATERIAL CONSIDERATIONS FOR SUBMICRON DEVICES. . .. . . . . .. . . . .. . .. . .... ... .. . . . .. . . . .. . . . . . . . . . . 45 H. L. Grubin EPITAXIAL GROWTH FOR SUB MICRON STRUCTURES.................. 179 C. E. C. Wood INSULATOR/SEMICONDUCTOR INTERFACES.......................... 195 C. W. Wilms en THEORY OF THE ELECTRONIC STRUCTURE OF SEMICONDUCTOR SURFACES AND INTERFACES......................................... 223 C. Calandra DEEP LEVELS AT COMPOUND-SEMICONDUCTOR INTERFACES........... 253 W. Monch ENSEMBLE MONTE CARLO TECHNIqUES............................. 289 C. Jacoboni NOISE AND DIFFUSION IN SUBMICRON STRUCTURES................. 323 L. Reggiani SUPERLATTICES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 . . . . . . . . . . . . K. Hess SUBMICRON LITHOGRAPHY 373 C. D. W. Wilkinson and S. P. Beaumont QUANTUM EFFECTS IN DEVICE STRUCTURES DUE TO SUBMICRON CONFINEMENT IN ONE DIMENSION.... ....................... 401 B. D. McCombe vii viii CONTENTS PHYSICS OF HETEROSTRUCTURES AND HETEROSTRUCTURE DEVICES..... 445 P. J. Price CORRELATION EFFECTS IN SHORT TIME, NONS TAT I ONARY TRANSPORT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 . . . . . . . . . . . . J. J. Niez DEVICE-DEVICE INTERACTIONS............ ...................... 503 D. K. Ferry QUANTUM TRANSPORT AND THE WIGNER FUNCTION................... 521 G. J. Iafrate FAR INFRARED MEASUREMENTS OF VELOCITY OVERSHOOT AND HOT ELECTRON DYNAMICS IN SEMICONDUCTOR DEVICES............. 577 S. J. Allen, Jr.
This book presents the versatile and pivotal role of electron spin interactions in nature. It provides the background, methodologies and tools for basic areas related to spin interactions, such as spin chemistry and biology, electron transfer, light energy conversion, photochemistry, radical reactions, magneto-chemistry and magneto-biology. The book also includes an overview of designing advanced magnetic materials, optical and spintronic devices and photo catalysts. This monograph will be of interest to scientists and graduate students working in the areas related to spin interactions physics, biophysics, chemistry and chemical engineering.
This book provides the theoretical basis and the relevant experimental knowledge underlying our present understanding of the electrical and optical properties of semiconductor heterostructures. Although such structures have been known since the 1940s, it was only in the 1980s that they moved to the forefront of research, largely due to technological developments that made it possible to grow several ultrathin layers of different materials _ down to a few atoms in thickness _ on top of a silicon or other substrates. The resulting structures have remarkable properties not shared by bulk materials. One can, for example, confine the motions of electrons to a single layer, making it possible to investigate effectively two-dimensional systems. One can also build materials with large-scale periodicities by alternating layers of different compositions, thereby modulating the optical and electronic properties of the resulting structure. The text begins with a description of the electronic properties of various types of heterostructures, including discussions of complex band-structure effects, localized states, tunneling phenomena, and excitonic states. The focus of most of the remainder of the book is on optical properties, including intraband absorption, luminescence and recombination, Raman scattering, subband optical transitions, nonlinear effects, and ultrafast optical phenomena. The concluding chapter presents an overview of some of the applications that make use of the physics discussed. Appendices provide ackground information on band structure theoy, kinetic theory, electromagnetic modes, and Coulomb effects. Intended for graduate students, physicists, and engineers beginning research onsemiconductor heterostructures or interested in their
In the last ten years, the physics and technology of low dimensional structures has experienced a tremendous development. Quantum structures with vertical and lateral confinements are now routinely fabricated with feature sizes below 100 run. While quantization of the electron states in mesoscopic systems has been the subject of intense investigation, the effect of confinement on lattice vibrations and its influence on the electron-phonon interaction and energy dissipation in nanostructures received atten tion only recently. This NATO Advanced Research Workshop on Phonons in Sem iconductor Nanostructures was a forum for discussion on the latest developments in the physics of phonons and their impact on the electronic properties of low-dimensional structures. Our goal was to bring together specialists in lattice dynamics and nanos tructure physics to assess the increasing importance of phonon effects on the physical properties of one-(lD) and zero-dimensional (OD) structures. The Workshop addressed various issues related to phonon physics in III-V, II-VI and IV semiconductor nanostructures. The following topics were successively covered: Models for confined phonons in semiconductor nanostructures, latest experimental observations of confined phonons and electron-phonon interaction in two-dimensional systems, elementary excitations in nanostructures, phonons and optical processes in reduced dimensionality systems, phonon limited transport phenomena, hot electron effects in quasi - ID structures, carrier relaxation and phonon bottleneck in quantum dots."
This research monograph presents the latest results related to the characterization of low dimensional systems. Low-angle polarized neutron scattering and X-ray scattering at grazing incidence are used as the two main techniques to explore various physical phenomena of these systems. Special focus is put on systems like thin film transition metal and rare-earth layers, oxide heterostructures, hybrid systems, self-assembled nanostructures and self-diffusion. Readers will gain in-depth knowledge about the usage of specular scattering and off-specular scattering techniques. Investigation of in-plane and out-of-plane structures and magnetism with vector magnetometric information is illustrated comprehensively. The book caters to a wide audience working in the field of nano-dimensional magnetic systems and the neutron and X-ray reflectometry community in particular.
In the years since the book of Lozanskii and Firsov "The Theory of Spark" 1975] was published, a number of experimental and theoretical studies in the physics of electric breakdown in gases were conducted. As a result of these studies, the concept of a wavelike nature of breakdown initiated by single high-voltage electric pulses or by a constant electric field was confirmed. Theoretical models in which the concept of breakdown in a constant external field was developed were first exposed in the above-named book in the chapter "Development of a streamer regarded as an ionization wave," written by Rodin and Starostin. This book treats the initial stage of electric breakdown as a wave pro cess. The wavelike nature of the phenomena under consideration is pre sented for streamers and sliding discharges, for electric breakdown develop ment in long discharge tubes as well as in gas-filled gaps. Chapter 1 gives a qualitative consideration of phenomena determin ing the electric breakdown of gases. The experimental data and theoretical results are exposed and discussed with application to streamers, plane ion ization waves, breakdown waves in long tubes, and propagation of sliding discharges. The subject of this chapter may be considered as an area of applications of different theoretical models, formulas, and estimates that are presented in other chapters of the book."
In this book, the author draws on his broad experience to describe both the theory and the applications of wave propagations. The contents are presented in four parts and the sequence of these parts reflect the development of ionospheric and propagational research in areas such as space research geophysics and communications. The first part of the book presents an outline of the theory of electromagnetic waves propagating in a cold electron plasma. For reference, vector analysis, dyadics and eigenvalues introduced in this part are presented in the appendices. Practical aspects of radio wave propagation are the subject of the second part. The typical conditions in different frequency ranges are discussed and the irregular features of the ionospheric structure such as sound and gravity waves are also considered. Warm plasma and the effects of ions are considered in the third part, which includes a discussion of sound-like waves in electron and ion plasmas. Nonlinear effects and instabilities are described in the fourth part.
For the past seventy years, ferrites (magnetic ceramics) have been prized for a range of properties that has no equivalent in the existing metal magnetic materials. They have contributed to many important advances in electronics and new high-performance products are appearing all the time. Ferrite technology has produced greater progress in the past 15 years since the first edition was published. Many of the semiconductor and IC technology responsible for the computer and Internet explosion would not have been possible without the magnetic materials technology needed for powering and otherwise exploiting those developments. Modern Ferrite Technology, 2nd ed, offers the readers an expert overview of the latest ferrite advances as well as their applications in electronic components. This volume develops the interplay among material properties, component specification and device requirements using ferrites. Throughout, emphasis is placed on practical technological concerns as opposed to mathematical and physical aspects of the subject. The book traces the origin of the magnetic effect in ferrites from the level of the simplest particle and the increases the scope to the larger and larger hierarchies. From the desired magnetic properties the author deduces the physical and chemical material parameters, taking into consideration major chemistry, impurity levels, ceramic microstructures and grain boundary effects. He then discusses the processing conditions and associated conditions required for implementation. In addition to conventional ceramic techniques, he describes non-conventional methods such as coprecipitation, co-spray roasting and single crystal growth. The secondsection of this book deals with a complete listing of the many important applications in the field including ferrites for permanent magnet, telecommunications, power supplies, memory systems magnetic recording and microwave applications. The function of ferrites in each of these applications is described. The requirements of the electronic circuit and device are broken down into the individual component specifications with regard to size and configuration. Design criteria for power level, degree of stability and cost are then considered.
to Electromagnetic Inverse Scattering by K. I. Hopcraft Department of Theoretical Mechanics, University of Nottingham, Nottingham, U. K. and P. R. Smith Department of Electronic and Electrical Engineering, University of Technology, Loughborough, U. K. Springer-Science+Business Media, B. V. Library of Congress Cataloging-in-Publication Data Hopcraft, K. I. An lntroductlon to electromagnetic inverse scattering I by K. I. Hopcraft and P. R. Smith. p. cm. -- (Developments in electromagnetic theory and application; 7) Includes blbliographical references and index. ISBN 978.90.481.4070.1 1. Electromagnetic waves--Scattering. 2. Inverse scattering transform. I. Smith, P. R., Ph. D. II. Title. III. Series: DevelopNents in electromagnetic theory and applications; 7. OC665. S3H67 1992 539. 2--dc20 92-23966 ISBN 978-90-481-4070-1 ISBN 978-94-015-8014-4 (eBook) DOI 10. 1007/978-94-015-8014-4 AH Rights Reserved (c) 1992 Springer Science+Business Media Dordrecht OriginaHy published by Kluwer Academic Publishers in 1992 Softcover reprint of the hardcover Ist edition 1992 No part ofthe material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. Contents (;Iossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix I'reface . . . . . xi 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 1 What is inverse scattering? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 2 Why study inverse scattering? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. 3 An historical sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. 4 How to solve inverse problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Definitions and terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Electromagnetic wave equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ."
One of the best ways to "lift the lid" on what is happening inside a given material is to study it using nuclear magnetic resonance (NMR). Of particular interest are NMR 1/T1 relaxation rates, which measure how fast energy stored in magnetic nuclei is transferred to surrounding electrons. This thesis develops a detailed, quantitative theory of NMR 1/T1 relaxation rates, and shows for the first time how they could be used to measure the speed at which energy travels in a wide range of magnetic materials. This theory is used to make predictions for"Quantum Spin Nematics", an exotic form of quantum order analogous to a liquid crystal. In order to do so, it is first necessary to unravel how spin nematics transport energy. This thesis proposes a new way to do this, based on the description of quarks in high-energy physics. Experiments to test the ideas presented are now underway in laboratories across the world.
An up-to-date progress report on the current status of solar-terrestrial relation studies with an emphasis on observations by the Russian Interball spacecraft and the Czech Magion subsatellites. Papers in the volume describe the various spacecraft in the International Solar-Terrestrial Program and the research questions that they are being used to address. The emphasis is on correlative studies employing multiple instruments and multiple spacecraft. The book begins with a description of each spacecraft active in 1998 and describes the roles they can play in correlative studies. This is followed by an up-to-date status report concerning ongoing studies of the solar wind, foreshock, bow shock, magnetopause, magnetotail, and ionosphere, with an emphasis on the observations made by the four Interball spacecraft. Readership Researchers and graduate students of space physics and astrophysics.
Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles presents an introduction to the fundamental optical properties of semiconductors. This book presents tutorial articles in the categories of materials and fundamental principles (Chapter 1), optical properties in the reststrahlen region (Chapter 2), those in the interband transition region (Chapters 3 and 4) and at or below the fundamental absorption edge (Chapter 5). Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles is presented in a form which could serve to teach the underlying concepts of semiconductor optical properties and their implementation. This book is an invaluable resource for device engineers, solid-state physicists, material scientists and students specializing in the fields of semiconductor physics and device engineering.
The book is designed to provide graduate students and research novices with an introductory review of recent developments in the field of magneto-optics. The field encompasses many of the most important subjects in solid state physics, chemical physics and electronic engineering. The book deals with (1) optical spectroscopy of paramagnetic, antiferromagnetic, and ferromagnetic materials, (2) studies of photo-induced magnetism, and (3) their applications to opto-electronics. Many of these studies originate from those of ligand-field spectra of solids, which are considered to have contributed to advances in materials research for solid-state lasers. |
You may like...
The Electron - Its Isolation and…
Robert Andrews 1868-1953 Millikan
Hardcover
R863
Discovery Miles 8 630
Absolutism versus Relativity - Volume I…
Mohammad Javanshiry
Hardcover
R1,447
Discovery Miles 14 470
Dust Explosions - Theory and Nature of…
David James 1884-1951 Price
Hardcover
R859
Discovery Miles 8 590
|