Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Electricity, magnetism & electromagnetism
Common methods of local magnetic imaging display either a high spatial resolution and relatively poor field sensitivity (MFM, Lorentz microscopy), or a relatively high field sensitivity but limited spatial resolution (scanning SQUID microscopy). Since the magnetic field of a nanoparticle or nanostructure decays rapidly with distance from the structure, the achievable spatial resolution is ultimately limited by the probe-sample separation. This thesis presents a novel method for fabricating the smallest superconducting quantum interference device (SQUID) that resides on the apex of a very sharp tip. The nanoSQUID-on-tip displays a characteristic size down to 100 nm and a field sensitivity of 10^-3 Gauss/Hz^(1/2). A scanning SQUID microsope was constructed by gluing the nanoSQUID-on-tip to a quartz tuning-fork. This enabled the nanoSQUID to be scanned within nanometers of the sample surface, providing simultaneous images of sample topography and the magnetic field distribution. This microscope represents a significant improvement over the existing scanning SQUID techniques and is expected to be able to image the spin of a single electron.
William Thomson, Baron Kelvin (1824 1907), born with a great talent for mathematics and physics, was educated at Glasgow and Cambridge. While only in his twenties, he was appointed to the University of Glasgow's Chair in Natural Philosophy, which he was to hold for over fifty years. He is best known for lending his name to the Kelvin unit of measurement for temperature, after his development of an absolute scale of temperature. This book is a corrected 1884 edition of Kelvin's 1872 collection of papers on electrostatics and magnetism. It includes all his work on these subjects previously published as articles in journals including the Cambridge Mathematical Journal and the Transactions of the Royal Society. Kelvin also wrote several new items to fill gaps in this collection, so that its coverage of the state of electromagnetic research in the late nineteenth century is comprehensive.
James Clerk Maxwell (1831-1879), first Cavendish Professor of Physics at Cambridge, made major contributions to many areas of theoretical physics and mathematics, not least his discoveries in the fields of electromagnetism and of the kinetic theory of gases, which have been regarded as laying the foundations of all modern physics. This work of 1881 was edited from Maxwell's notes by a colleague, William Garnett, and had formed the basis of his lectures. Several of the articles included in the present work were also included in his two-volume Treatise on Electricity and Magnetism (1873), also reissued in this series. The preface indicates that the two works were aimed at somewhat different audiences, the larger work assuming a greater knowledge of higher mathematics. Maxwell had also modified some of his methodology, and hoped to encourage the reader to develop an understanding of concepts relating to electricity.
The accomplishments and the available expertise of scientists working on spin systems, lattice gauge models, and quantum liquids and solids has culminated in an extraordinary opportunity for rapid and efficient development of realistic strategies and algorithms of ab initio theoretical analysis of conventional and exotic condensed-matter systems. This volume presents the latest results in the interdisciplinary field of lattice many-body systems. These include magnetism and phase transitions and lattice gauge problems in quantum field theory. Also treated are strongly correlated systems that help to unify many-body problems in solid-state physics, crystallography, and materials sciences and that helped their quantitative understanding.
This bookis botha course book and a monograph. In fact, it has developed from notes given to graduate course students on materials processing in the years 1989 to 2006. Electromagnetic Processing of Materials (EPM), originatesfroma branchof materials science and engineeringdeveloped in the1980s as a field aiming to create new materials and/or design processes by making use of various functions which appear when applying the electric and magnetic fieldsto materials. It is based on transport phenomena, materials processing and magnetohydrodynamics. The first chapter briefly introduces the history, background and technology of EPM. In the second chapter, the concept of transport phenomena is concisely introduced and in the third chapter the essential part of magnetohydrodynamics is transcribed and readers areshown that the concept of transport phenomenadoes not only applyto heat, mass and momentum, but also magnetic field. The fourth chapter describes electromagnetic processing of electrically conductive materials such as electromagnetic levitation, mixing, brake, and etc., which are caused by the Lorentz force. The fifth chapter treats magnetic processing of organic and non-organic materials such as magnetic levitation, crystal orientation, structural alignment and etc., which are induced by the magnetization force. This part is a new academic field named Magneto-Science, which focuseson the development of super-conducting magnets. This book is written so as to be understood by any graduate student in engineering courses but also to be of interest to engineers and researchers in industries."
This volume, intended as a contribution to the 10th birthday of high T"c"-superconductivity, conveys the essential ideas of the field and addresses researchers as well as graduate students. A special feature is the pedagogical treatment of a variety of modern computational methods to deal with non-pertubative effects in strongly correlated systems. Among the topics treated are the Hubbard models, real space renormalization group methods, quantum phase transitions, the non-linear sigma model, spin ladders and layers, and the quantum Hall effect.
A self-taught authority on electromagnetic theory, telegraphy and telephony, Oliver Heaviside (1850-1925) dedicated his adult life to the improvement of electrical technologies. Inspired by James Clerk Maxwell's field theory, he spent the 1880s presenting his ideas as a regular contributor to the weekly journal, The Electrician. The publication of Electrical Papers, a year after his election to the Royal Society in 1891, established his fame beyond the scientific community. An eccentric figure with an impish sense of humour, Heaviside's accessible style enabled him to educate an entire generation in the importance and application of electricity. In so doing he helped to establish that very British phenomenon, the garden-shed inventor. Illustrated with practical examples, the subjects covered in Volume 1 include voltaic constants, duplex telegraphy, microphones and electromagnets.
A self-taught authority on electromagnetic theory, telegraphy and telephony, Oliver Heaviside (1850-1925) dedicated his adult life to the improvement of electrical technologies. Inspired by James Clerk Maxwell's field theory, he spent the 1880s presenting his ideas as a regular contributor to the weekly journal, The Electrician. The publication of Electrical Papers, a year after his election to the Royal Society in 1891, established his fame beyond the scientific community. An eccentric figure with an impish sense of humour, Heaviside's accessible style enabled him to educate an entire generation in the importance and application of electricity. In so doing he helped to establish that very British phenomenon, the garden-shed inventor. Combining articles on the electromagnetic wave surface and electromagnetic induction with notes on nomenclature and the self-induction of wires, Volume 2 serves as an excellent source for both electrical engineers and historians of science.
Oliver Heaviside FRS (1850-1925) was a scientific maverick and a gifted self-taught electrical engineer, physicist and mathematician. He patented the co-axial cable, pioneered the use of complex numbers for circuit analysis, and reworked Maxwell's field equations into a more concise format. In 1891 the Royal Society made him a Fellow for his mathematical descriptions of electromagnetic phenomena. Along with Arthur Kennelly, he also predicted the existence of the ionosphere. Often dismissed by his contemporaries, his work achieved wider recognition when he received the inaugural Faraday Medal in 1922. Published 1893 this is the first of three volumes that bring together Heaviside's contributions to electromagnetic theory. It introduces the subject at length, and features his first description of vector analysis and the reworking of Maxwell's field equations into the form we know today.
Oliver Heaviside FRS (1850-1925) was a scientific maverick and a gifted self-taught electrical engineer, physicist and mathematician. He patented the co-axial cable, pioneered the use of complex numbers for circuit analysis, and reworked Maxwell's field equations into the more concise format we use today. In 1891 the Royal Society made him a Fellow for his mathematical descriptions of electromagnetic phenomena. Along with Arthur Kennelly, he also predicted the existence of the ionosphere. Often dismissed by his contemporaries, his work achieved wider recognition when he received the inaugural Faraday Medal in 1922. Published in 1899, the second of three volumes of Heaviside's collected work argues that physical problems (such as the age of the Earth) drive mathematical ideas, and then goes on to compare the propagation of electromagnetic waves with physical analogues.
Oliver Heaviside FRS (1850-1925) was a scientific maverick and a gifted self-taught electrical engineer, physicist and mathematician. He patented the co-axial cable, pioneered the use of complex numbers for circuit analysis, and reworked Maxwell's field equations into the more concise format we use today. In 1891 the Royal Society made him a Fellow for his mathematical descriptions of electromagnetic phenomena. Along with Arthur Kennelly, he also predicted the existence of the ionosphere. Often dismissed by his contemporaries, his work achieved wider recognition when he received the inaugural Faraday Medal in 1922. Published in 1912, this is the last of three volumes summarising Heaviside's enormous contribution to electromagnetic theory. It includes a review of his work on waves from moving sources, and an appendix on vector analysis that compares its merits to quaternions.
Solar energy will undoubtedly become a main source of energy in our life by the end of this century, but how big of a role will photovoltaics play in this new energy infrastructure? Besides cost and efficiency, there are other barriers for current solar cell technologies to become a noticeable source of energy in the future. Availability of raw materials, energy input, storage of solar electricity, and recycling of dead modules can all prevent or hinder a tangible impact by solar photovoltaics. This book is intended for readers with minimal technical background and aims to explore not only the fundamentals but also major issues in large-scale deployment of solar photovoltaics. Thought-provoking ideas to overcoming some of the barriers are discussed.
Magnetic Components Design and Applications is intended primarily for the circuit designer and the power processing systems designer who have found that in order to be more effective they must learn not only to use, but to design their own magnetic components. It will also be useful to the trans former engineer, by showing how to develop high-performance designs quickly and easily by employing optimization criteria. This book is a design manual, a how-to-build-it manual, and a survey of some common and state-of-the-art practices in magnetic component design and high voltage insulation. It contains the data necessary to design power transformers on a gradient scale from 60 Hz to several hundred kilohertz, conventional and air-core current transformers, power reactors, saturable transformers and saturable reactors, and air core and conventional pulse transformers. Further, it con tains essential information about dielectric materials and fabrication meth ods, basic heat transfer technology, and electric field gradient control for high voltage applications. Mathematical methods of optimization are developed, and results are given in a number of areas, particularly in the area of maximizing power den sity in power transformers and the maximization of stored energy per unit volume for power reactors. For various reasons, each chapter is written from a different starting level."
On the current status of research activity, providing new information on the applications of SQUIDs, including magnetocardiography, immunoassays, and laser-SQUID microscopes, all of which are close to being commercially available.
Although topology was recognized by Gauss and Maxwell to play a pivotal role in the formulation of electromagnetic boundary value problems, it is a largely unexploited tool for field computation. The development of algebraic topology since Maxwell provides a framework for linking data structures, algorithms, and computation to topological aspects of three-dimensional electromagnetic boundary value problems. This book attempts to expose the link between Maxwell and a modern approach to algorithms. The first chapters lay out the relevant facts about homology and cohomology, stressing their interpretations in electromagnetism. These topological structures are subsequently tied to variational formulations in electromagnetics, the finite element method, algorithms, and certain aspects of numerical linear algebra. A recurring theme is the formulation of and algorithms for the problem of making branch cuts for computing magnetic scalar potentials and eddy currents.
This textbook is aimed at engineering students who are likely to come across magnetics applications in their professional practice. Whether designing lithography equipment containing ferromagnetic brushes, or detecting defects in aeronautics, some basic knowledge of 21st century magnetism is needed. From the magnetic tape on the pocket credit card to the read head in a personal computer, people run into magnetism in many products. Furthermore, in a variety of disciplines tools of the trade exploit magnetic principles, and many interdisciplinary laboratory research areas cross paths with magnetic phenomena that may seem mysterious to the untrained mind. Therefore, this course offers a broad coverage of magnetism topics encountered more often in this millenium, revealing key concepts on which many practical applications rest. Some traditional subjects in magnetism are discussed in the first half of the book, followed by areas likely to spark the curiosity of those more interested in today's technological achievements. Although sometimes some aspects may seem difficult to comprehend at first, bibliography directs the reader to appropriate further study. Throughout the chapters, the student is encouraged to discover the not-so-obvious associations between different magnetics topics, a task that will prove to be at the very least rewarding.
The study of classical electromagnetic fields is an adventure. The theory is complete mathematically and we are able to present it as an example of classical Newtonian experimental and mathematical philosophy. There is a set of foundational experiments, on which most of the theory is constructed. And then there is the bold theoretical proposal of a field-field interaction from James Clerk Maxwell. This textbook presents the theory of classical fields as a mathematical structure based solidly on laboratory experiments. Here the student is introduced to the beauty of classical field theory as a gem of theoretical physics. To keep the discussion fluid, the history is placed in a beginning chapter and some of the mathematical proofs in the appendices. Chapters on Green's Functions and Laplace's Equation and a discussion of Faraday's Experiment further deepen the understanding. The chapter on Einstein's relativity is an integral necessity to the text. Finally, chapters on particle motion and waves in a dispersive medium complete the picture. High quality diagrams and detailed end-of-chapter questions enhance the learning experience."
The Morals of Measurement is a contribution to the social histories of quantification and of electrical technology in nineteenth-century Britain, Germany, and France. It shows how the advent of commercial electrical lighting stimulated the industrialisation of electrical measurement from a skilled labour-intensive activity to a mechanised practice relying on radically new kinds of instruments. Challenging traditional accounts that focus on metrological standards, this book shows instead the centrality of trust when measurement was undertaken in an increasingly complex division of labour with manufactured hardware. Case studies demonstrate how difficult late Victorians found it to agree upon which electrical practitioners, instruments, and metals were most trustworthy and what they could hope to measure with any accuracy. Subtle ambiguities arose too over what constituted 'measurement' or 'accuracy' and thus over the respective responsibilities of humans and technologies in electrical practice. Running alongside these concerns, the themes of body, gender, and authorship feature importantly in controversies over the changing identity of the measurer. In examining how new groups of electrical experts and consumers construed the fairness of metering for domestic lighting, this work charts the early moral debates over what is now a ubiquitous technology for quantifying electricity. Accordingly readers will gain fresh insights, tinged with irony, on a period in which measurement was treated as the definitive means of gaining knowledge of the world.
Henry Cavendish (1731 1810) was an English scientist whose published work was mostly concerned with electricity. He was elected a Fellow of the Royal Society in 1760. Cavendish was a prolific scientific investigator, performing experiments on not only electricity but also magnetism, thermometry, gases, heat potential and the chemical composition of water. Although he published some of his research, including his discovery of hydrogen, the majority of his work remained unpublished until 1879, when James Clerk Maxwell published a collection of Cavendish's electrical experiments. These papers showed that Cavendish had discovered many important electrical concepts which had since been credited to other researchers, including the concept of electric potential. First published in 1921, these volumes are a collection of Cavendish's results from his many experiments. Volume 1 is a revised edition of James Clerk Maxwell's 1879 volume Electrical Researches of Henry Cavendish, also reissued in this series.
Henry Cavendish (1731 1810) was an English scientist whose published work was mostly concerned with electricity. He was elected a Fellow of the Royal Society in 1760. Cavendish was a prolific scientific investigator, performing experiments on not only electricity but also magnetism, thermometry, gases, heat potential and the chemical composition of water. Although he published some of his research, including his discovery of hydrogen, the majority of his work remained unpublished until 1879, when James Clerk Maxwell published a collection of Cavendish's electrical experiments. These papers showed that Cavendish had discovered many important electrical concepts which had since been credited to other researchers, including the concept of electric potential. First published in 1921, these volumes are a collection of Cavendish's results from his many experiments. Volume 2 contains previously unpublished papers showing the results of Cavendish's chemical, magnetic and thermometry experiments.
The research of unitary concepts in solid state and molecular chemistry is of current interest for both chemist and physicist communities. It is clear that due to their relative simplicity, low dimensional materials have attracted most of the attention. Thus, many non-trivial problems were solved in chain systems, giving some insight into the behavior of real systems which would otherwise be untractable. The NATO Advanced Research Workshop on "Organic and Inorganic Low-Dimensional Crystalline Materials" was organized to review the most striking electronic properties exhibited by organic and inorganic sytems whose space dimensionality ranges from zero (Od) to one (1d), and to discuss related scientific and technological potentials. The initial objectives of this Workshop were, respectively: i) To research unitary concepts in solid state physics, in particular for one dimensional compounds, ii) To reinforce, through a close coupling between theory and experiment, the interplay between organic and inorganic chemistry, on the one hand, and solid state physics on the other, iii) To get a salient understanding of new low-dimensional materials showing "exotic" physical properties, in conjunction with structural features.
This book brings together an emerging consensus on our understanding of the complex functional materials including ferroics, perovskites, multiferroics, CMR and high-temperature superconductors. The common theme is the existence of many competing ground states and frustration as a collusion of spin, charge, orbital and lattice degrees of freedom in the presence of disorder and (both dipolar and elastic) long-range forces. An important consequence of the complex unit cell and the competing interactions is that the emergent materials properties are very sensitive to external fields thus rendering these materials with highly desirable, technologically important applications enabled by cross-response.
A modern and concise treatment of the solid state electronic devices that are fundamental to electronic systems and information technology is provided in this book. The main devices that comprise semiconductor integrated circuits are covered in a clear manner accessible to the wide range of scientific and engineering disciplines that are impacted by this technology. Catering to a wider audience is becoming increasingly important as the field of electronic materials and devices becomes more interdisciplinary, with applications in biology, chemistry and electro-mechanical devices (to name a few) becoming more prevalent. Updated and state-of-the-art advancements are included along with emerging trends in electronic devices and their applications. In addition, an appendix containing the relevant physical background will be included to assist readers from different disciplines and provide a review for those more familiar with the area. Readers of this book can expect to derive a solid foundation for understanding modern electronic devices and also be prepared for future developments and advancements in this far-reaching area of science and technology. |
You may like...
The Free Expansion of Gases - Memoirs by…
Joseph Sweetman 1864-1943 Ed Ames, Joseph Louis 1778-1850 Gay-Lussac, …
Hardcover
R759
Discovery Miles 7 590
Wind Turbines - Advances and Challenges…
Karam Maalawi
Hardcover
|